BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 6383402)

  • 1. The use of calcium uptake by small amounts of mitochondria from pancreatic islets to study mitochondrial respiration: the effects of diazoxide and sodium.
    MacDonald MJ
    Biochem Int; 1984 Jun; 8(6):771-8. PubMed ID: 6383402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitochondrial respiratory toxicity of cephalosporin antibiotics. An inhibitory effect on substrate uptake.
    Tune BM; Sibley RK; Hsu CY
    J Pharmacol Exp Ther; 1988 Jun; 245(3):1054-9. PubMed ID: 3385637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High content of mitochondrial glycerol-3-phosphate dehydrogenase in pancreatic islets and its inhibition by diazoxide.
    MacDonald MJ
    J Biol Chem; 1981 Aug; 256(16):8287-90. PubMed ID: 6790537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-dependent effects of calcium on rat retinal mitochondrial respiration: physiological and toxicological studies.
    Medrano CJ; Fox DA
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):309-21. PubMed ID: 8171438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension.
    Schweizer M; Richter C
    Biochem Biophys Res Commun; 1994 Oct; 204(1):169-75. PubMed ID: 7945356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory control in mitochondria from Trypanosoma cruzi.
    Affranchino JL; De Tarlovsky MN; Stoppani AO
    Mol Biochem Parasitol; 1985 Sep; 16(3):289-98. PubMed ID: 3903495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied.
    MacDonald MJ; Brown LJ
    Arch Biochem Biophys; 1996 Feb; 326(1):79-84. PubMed ID: 8579375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and not as a mitochondrial substrate.
    Düfer M; Krippeit-Drews P; Buntinas L; Siemen D; Drews G
    Biochem J; 2002 Dec; 368(Pt 3):817-25. PubMed ID: 12350226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of LN 5330 on insulin release and calcium uptake by isolated rat islets of Langerhans. Comparison with diazoxide.
    Manteghetti M; Puech R; Ribes G; Blayac JP; Loubatieres-Mariani MM
    Arch Int Pharmacodyn Ther; 1984 Nov; 272(1):159-67. PubMed ID: 6393887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimates of glycolysis, pyruvate (de)carboxylation, pentose phosphate pathway, and methyl succinate metabolism in incapacitated pancreatic islets.
    MacDonald MJ
    Arch Biochem Biophys; 1993 Sep; 305(2):205-14. PubMed ID: 8373157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium transport in bovine sperm mitochondria: effect of substrates and phosphate.
    Breitbart H; Wehbie R; Lardy HA
    Biochim Biophys Acta; 1990 Jul; 1026(1):57-63. PubMed ID: 1696124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose induces synchronous mitochondrial calcium oscillations in intact pancreatic islets.
    Quesada I; Villalobos C; Núñez L; Chamero P; Alonso MT; Nadal A; García-Sancho J
    Cell Calcium; 2008 Jan; 43(1):39-47. PubMed ID: 17499355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of calcium influx in mediating glucose-stimulated oxygen consumption in pancreatic islets.
    Sweet IR; Gilbert M
    Diabetes; 2006 Dec; 55(12):3509-19. PubMed ID: 17130499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porin proteins in mitochondria from rat pancreatic islet cells and white adipocytes: identification and regulation of hexokinase binding by the sulfonylurea glimepiride.
    Müller G; Korndörfer A; Kornak U; Malaisse WJ
    Arch Biochem Biophys; 1994 Jan; 308(1):8-23. PubMed ID: 8311478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidant injury to isolated heart cells.
    Kaminishi K; Yanagishita T; Kako KJ
    Can J Cardiol; 1989 Apr; 5(3):168-74. PubMed ID: 2720482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The influence of the fluorine-containing activators of mitochondrial adenosine triphosphate sensitive potassium channels on the oxidative phosphorilation].
    Pyvovar SM; Korzhov VI; Strutyns'kyĭ RB; Iahupol's'kyĭ LM; Moĭbenko OO
    Fiziol Zh (1994); 2006; 52(3):25-33. PubMed ID: 16909753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro effects of cyclosporine on function of rat kidney mitochondria.
    Strzelecki T; Khauli RB; Kumar S; Menon M
    Transplant Proc; 1987 Feb; 19(1 Pt 2):1393-4. PubMed ID: 3152630
    [No Abstract]   [Full Text] [Related]  

  • 20. Nutrient modulation of polarized and sustained submembrane Ca2+ microgradients in mouse pancreatic islet cells.
    Quesada I; Martín F; Soria B
    J Physiol; 2000 May; 525 Pt 1(Pt 1):159-67. PubMed ID: 10811734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.