BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6383464)

  • 1. Cysteinyl residues of Escherichia coli recA protein.
    Kuramitsu S; Hamaguchi K; Tachibana H; Horii T; Ogawa T; Ogawa H
    Biochemistry; 1984 May; 23(11):2363-7. PubMed ID: 6383464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assignment of catalytically essential cysteine residues in aspartase by selective chemical modification with N-(7-dimethylamino-4-methylcoumarynyl)maleimide.
    Ida N; Tokushige M
    J Biochem; 1985 Sep; 98(3):793-7. PubMed ID: 3910645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfhydryl chemistry of Salmonella typhimurium phosphoribosylpyrophosphate synthetase: identification of two classes of cysteinyl residues.
    Harlow KW; Switzer RL
    Arch Biochem Biophys; 1990 Feb; 276(2):466-72. PubMed ID: 2154950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli.
    Liu M; Huang Y; Wu J; Wang E; Wang Y
    Biochemistry; 1999 Aug; 38(34):11006-11. PubMed ID: 10460155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on regulatory functions of malic enzymes. VII. Structural and functional characteristics of sulfhydryl groups in NADP-linked malic enzyme from Escherichia coli W.
    Iwakura M; Tokushige M; Katsuki H
    J Biochem; 1979 Nov; 86(5):1239-49. PubMed ID: 42642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional cysteinyl residues in human placental aldose reductase.
    Liu SQ; Bhatnagar A; Das B; Srivastava SK
    Arch Biochem Biophys; 1989 Nov; 275(1):112-21. PubMed ID: 2510598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanosoma cruzi phospho enol pyruvate carboxykinase (ATP-dependent): transition metal ion requirement for activity and sulfhydryl group reactivity.
    Jurado LA; Machín I; Urbina JA
    Biochim Biophys Acta; 1996 Jan; 1292(1):188-96. PubMed ID: 8547343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an essential cysteine residue in pyridoxal phosphatase from human erythrocytes.
    Gao G; Fonda ML
    J Biol Chem; 1994 Mar; 269(11):8234-9. PubMed ID: 8132548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of cysteine residues in 4-oxalomesaconate hydratase from Pseudomonas ochraceae NGJ1.
    Li S; Kimura M; Takashima T; Hayashi K; Inoue K; Ishiguro R; Sugisaki H; Maruyama K
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):449-57. PubMed ID: 17284837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-induced changes in sulfhydryl reactivity of bacterial D-amino acid transaminase.
    Soper TS; Ueno H; Manning JM
    Arch Biochem Biophys; 1985 Jul; 240(1):1-8. PubMed ID: 4015092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cysteine residues in glutathione synthetase from Escherichia coli B. Chemical modification and oligonucleotide site-directed mutagenesis.
    Kato H; Tanaka T; Nishioka T; Kimura A; Oda J
    J Biol Chem; 1988 Aug; 263(24):11646-51. PubMed ID: 3042775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites.
    Pettigrew DW
    Biochemistry; 1986 Aug; 25(16):4711-8. PubMed ID: 3021201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reactions of Escherichia coli citrate synthase with the sulfhydryl reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and 4,4'-dithiodipyridine.
    Talgoy MM; Bell AW; Duckworth HW
    Can J Biochem; 1979 Jun; 57(6):822-33. PubMed ID: 38891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of Escherichia coli UmuD with activated RecA analyzed by cross-linking UmuD monocysteine derivatives.
    Lee MH; Walker GC
    J Bacteriol; 1996 Dec; 178(24):7285-94. PubMed ID: 8955414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of the high-affinity single-stranded DNA binding state of the Escherichia coli recA protein.
    Menetski JP; Varghese A; Kowalczykowski SC
    Biochemistry; 1988 Feb; 27(4):1205-12. PubMed ID: 3284580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis.
    Ploux O; Lei Y; Vatanen K; Liu HW
    Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A large-scale preparation and some physicochemical properties of recA protein.
    Kuramitsu S; Hamaguchi K; Ogawa T; Ogawa H
    J Biochem; 1981 Oct; 90(4):1033-45. PubMed ID: 7309710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an essential cysteinyl residue for the structure of glutamine synthetase alpha from Phaseolus vulgaris.
    Estivill G; Guardado P; Buser R; Betti M; Márquez AJ
    Planta; 2010 Apr; 231(5):1101-11. PubMed ID: 20237895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of mixed disulfide adducts at cysteine-281 of the lactose repressor protein affects operator and inducer binding parameters.
    Daly TJ; Olson JS; Matthews KS
    Biochemistry; 1986 Sep; 25(19):5468-74. PubMed ID: 3535878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of inactivation of glutamate decarboxylase by cysteine-specific reagents.
    McCormick SJ; Tunnicliff G
    Acta Biochim Pol; 2001; 48(2):573-8. PubMed ID: 11732626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.