These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 6383464)

  • 61. Study of the reaction mechanism of the D-glutamic acid-adding enzyme from Escherichia coli.
    Vaganay S; Tanner ME; van Heijenoort J; Blanot D
    Microb Drug Resist; 1996; 2(1):51-4. PubMed ID: 9158722
    [TBL] [Abstract][Full Text] [Related]  

  • 62. RecA protein from an extremely thermophilic bacterium, Thermus thermophilus HB8.
    Kato R; Kuramitsu S
    J Biochem; 1993 Dec; 114(6):926-9. PubMed ID: 8138553
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis.
    Menetski JP; Bear DG; Kowalczykowski SC
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):21-5. PubMed ID: 2404275
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reactivity of cysteine-67 of the human immunodeficiency virus-1 protease: studies on a peptide spanning residues 59 to 75.
    D'Ettorre C; Levine RL
    Arch Biochem Biophys; 1994 Aug; 313(1):71-6. PubMed ID: 8053689
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Purification of recA-based fusion proteins by immunoadsorbent chromatography. Characterization of a major antigenic determinant of Escherichia coli recA protein.
    Krivi GG; Bittner ML; Rowold E; Wong EY; Glenn KC; Rose KS; Tiemeier DC
    J Biol Chem; 1985 Aug; 260(18):10263-7. PubMed ID: 2410422
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sequential chemical modification of a histidyl and a cysteinyl residue in bacterial luciferase.
    Cousineau J; Meighen E
    Can J Biochem; 1977 Apr; 55(4):433-8. PubMed ID: 870151
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chemical modification of lactose repressor protein using N-substituted maleimides.
    Brown RD; Matthews KS
    J Biol Chem; 1979 Jun; 254(12):5128-34. PubMed ID: 376506
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fluorescence studies of pyrene maleimide-labeled translin: excimer fluorescence indicates subunits associate in a tail-to-tail configuration to form octamer.
    Han MK; Lin P; Paek D; Harvey JJ; Fuior E; Knutson JR
    Biochemistry; 2002 Mar; 41(10):3468-76. PubMed ID: 11876655
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fast-reacting thiols in rat hemoglobins can intercept damaging species in erythrocytes more efficiently than glutathione.
    Rossi R; Barra D; Bellelli A; Boumis G; Canofeni S; Di Simplicio P; Lusini L; Pascarella S; Amiconi G
    J Biol Chem; 1998 Jul; 273(30):19198-206. PubMed ID: 9668107
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pressure-induced perturbation on the active site of beta-amylase monitored from the sulfhydryl reaction.
    Tanaka N; Mitani D; Kunugi S
    Biochemistry; 2001 May; 40(20):5914-20. PubMed ID: 11352726
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evaluation of methods for the quantitation of cysteines in proteins.
    Wright SK; Viola RE
    Anal Biochem; 1998 Dec; 265(1):8-14. PubMed ID: 9866701
    [TBL] [Abstract][Full Text] [Related]  

  • 72. N-(7-dimethylamino-4-methylcoumarinyl)-maleimide (DACM): an alternative label for fluorescence tracing.
    Namihisa T; Saifuku K; Ishii H; Watanabe S; Sekine T
    J Immunol Methods; 1983; 56(1):125-34. PubMed ID: 6338112
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The use of cysteinyl peptides to effect portage transport of sulfhydryl-containing compounds in Escherichia coli.
    Boehm JC; Kingsbury WD; Perry D; Gilvarg C
    J Biol Chem; 1983 Dec; 258(24):14850-5. PubMed ID: 6361018
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Specific cleavage of glucosephosphate isomerases at cysteinyl residues using 2-nitro-5-thiocyanobenzoic acid: analyses of peptides eluted from polyacrylamide gels and localization of active site histidyl and lysyl residues.
    Lu HS; Gracy RW
    Arch Biochem Biophys; 1981 Dec; 212(2):347-59. PubMed ID: 6798937
    [No Abstract]   [Full Text] [Related]  

  • 75. Fluorescent tracer method for protein SH groups. III. Use of N-(7-dimethylamino-4-methylcoumarinyl) maleimide as a tracer of cysteine-containing peptides.
    Yamamoto K; Sekine T
    Anal Biochem; 1978 Oct; 90(1):300-8. PubMed ID: 727471
    [No Abstract]   [Full Text] [Related]  

  • 76. Effects of substrates on the selective modification of the cysteinyl residues of D-amino acid transaminase.
    Soper TS; Jones WM; Manning JM
    J Biol Chem; 1979 Nov; 254(21):10901-5. PubMed ID: 500615
    [No Abstract]   [Full Text] [Related]  

  • 77. [Location of cysteine in primary structure of yeast 3-phosphoglycerate kinase].
    Fattoum A; Feinberg J; Desvages G; Roustan C
    C R Acad Hebd Seances Acad Sci D; 1977 May; 284(18):1843-6. PubMed ID: 408029
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Use of N-(7-dimethylamino-4-methylcoumarinyl)maleinimide for the detection of cysteine-containing peptides in peptide maps.
    Klasen EC
    Anal Biochem; 1982 Apr; 121(2):230-3. PubMed ID: 6179437
    [No Abstract]   [Full Text] [Related]  

  • 79. Sulfenyl halides as modifying reagents for polypeptides and proteins. II. Modification of cysteinyl residues.
    Fontana A; Scoffone E; Benassi CA
    Biochemistry; 1968 Mar; 7(3):980-6. PubMed ID: 5657863
    [No Abstract]   [Full Text] [Related]  

  • 80. Immobilization of proteins as a tool for studying primary structure around their cysteinyl residues.
    Amarant T; Bohak Z
    Appl Biochem Biotechnol; 1981 Sep; 6(3):237-50. PubMed ID: 24233884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.