These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 6383475)

  • 21. The mechanism of decreased Na+-dependent D-glucose transport in brush-border membrane vesicles from rabbit kidneys with experimental Fanconi syndrome.
    Orita Y; Fukuhara Y; Yanase M; Okada N; Nakanishi T; Horio M; Moriyama T; Ando A; Abe H
    Biochim Biophys Acta; 1984 Apr; 771(2):195-200. PubMed ID: 6538438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for tyrosyl residues at the Na+ site on the intestinal Na+/glucose cotransporter.
    Peerce BE; Wright EM
    J Biol Chem; 1985 May; 260(10):6026-31. PubMed ID: 3922968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose transport during ageing by human intestinal brush-border membrane vesicles.
    Vincenzini MT; Iantomasi T; Stio M; Favilli F; Vanni P; Tonelli F; Treves C
    Mech Ageing Dev; 1989 Apr; 48(1):33-41. PubMed ID: 2725073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phorbol ester inhibition of chicken intestinal brush-border sodium-proton exchange.
    Chang EB; Musch MW; Drabik-Arvans D; Rao MC
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1264-72. PubMed ID: 1647664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of lipid exchange proteins isolated from small intestinal brush border membrane.
    Lipka G; Schulthess G; Thurnhofer H; Wacker H; Wehrli E; Zeman K; Weber FE; Hauser H
    J Biol Chem; 1995 Mar; 270(11):5917-25. PubMed ID: 7890723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of SH-groups in the concentrative transport of D-glucose into brush border membrane vesicles.
    Biber J; Hauser H
    FEBS Lett; 1979 Dec; 108(2):451-6. PubMed ID: 520588
    [No Abstract]   [Full Text] [Related]  

  • 27. Partial purification of hog kidney sodium-D-glucose cotransport system by affinity chromatography on a phlorizin polymer.
    Lin JT; Da Cruz ME; Riedel S; Kinne R
    Biochim Biophys Acta; 1981 Jan; 640(1):43-54. PubMed ID: 7194113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and histochemical localization of the rat intestinal Na(+)-D-glucose cotransporter by monoclonal antibodies.
    Haase W; Heitmann K; Friese W; Ollig D; Koepsell H
    Eur J Cell Biol; 1990 Aug; 52(2):297-309. PubMed ID: 2081531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the D-glucose binding polypeptide of the renal Na+-D-glucose cotransporter with a covalently binding D-glucose analog.
    Neeb M; Fasold H; Koepsell H
    FEBS Lett; 1985 Mar; 182(1):139-44. PubMed ID: 3838282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of sodium-dependent transport systems in rat renal brush-border membranes with N,N'-dicyclohexylcarbodiimide.
    Friedrich T; Sablotni J; Burckhardt G
    Biochem Biophys Res Commun; 1987 Aug; 147(1):375-81. PubMed ID: 3632677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insulin regulates Na+/glucose cotransporter activity in rat small intestine.
    Fujii Y; Kaizuka M; Hashida F; Maruo J; Sato E; Yasuda H; Kurokawa T; Ishibashi S
    Biochim Biophys Acta; 1991 Mar; 1063(1):90-4. PubMed ID: 2015265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carrier-mediated transport system for choline and its related quaternary ammonium compounds on rat intestinal brush-border membrane.
    Saitoh H; Kobayashi M; Sugawara M; Iseki K; Miyazaki K
    Biochim Biophys Acta; 1992 Nov; 1112(1):153-60. PubMed ID: 1420265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of carboxyl and sulfhydryl residues on rabbit small intestinal brush-border membrane Na(+)-glucose cotransporter.
    Peerce BE; Cedilote M; Clarke RD
    Am J Physiol; 1993 Feb; 264(2 Pt 1):G294-9. PubMed ID: 8447411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient opening of brush border membrane vesicles in alkaline media: preservation of D-glucose transport after removal of extrinsic proteins.
    Klip A; Grinstein S; Marti T; Semenza G
    FEBS Lett; 1979 Sep; 105(2):224-8. PubMed ID: 39782
    [No Abstract]   [Full Text] [Related]  

  • 35. Hydrogen ion-coupled transport of D-glucose by phlorizin-sensitive sugar carrier in intestinal brush-border membranes.
    Hoshi T; Takuwa N; Abe M; Tajima A
    Biochim Biophys Acta; 1986 Oct; 861(3):483-8. PubMed ID: 3768358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The small-intestinal Na+, D-glucose cotransporter: an asymmetric gated channel (or pore) responsive to delta psi.
    Kessler M; Semenza G
    J Membr Biol; 1983; 76(1):27-56. PubMed ID: 6315944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of multiple sodium ions in intestinal d-glucose transport.
    Kaunitz JD; Gunther R; Wright EM
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2315-8. PubMed ID: 6954543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Na+-coupled D-glucose uptake and membrane order of enterocyte brush border membrane vesicles, under the effect of a series of N-phenylcarbamates.
    Fernandez Y; Boigegrain RA; Cambon-Gros C; Deltour P; Mitjavila S
    FEBS Lett; 1986 May; 201(1):119-23. PubMed ID: 3709801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intestinal phosphate transport: localization, properties and identification, a progress report.
    Shirazi-Beechey SP; Gorvel JP; Beechey RB
    Prog Clin Biol Res; 1988; 252():59-64. PubMed ID: 3347632
    [No Abstract]   [Full Text] [Related]  

  • 40. Changes in amino acid and glucose transport in brush-border membrane vesicles of hyperglycemic guinea-pig small intestine.
    Satoh O; Koyama S; Yamada K; Kawasaki T
    Biochim Biophys Acta; 1991 Mar; 1063(1):155-61. PubMed ID: 1826612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.