These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 6384195)

  • 1. Permeability changes in the cytoplasmic membrane of Escherichia coli K-12 early after infection with bacteriophage T1.
    Keweloh H; Bakker EP
    J Bacteriol; 1984 Oct; 160(1):347-53. PubMed ID: 6384195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased permeability and subsequent resealing of the host cell membrane early after infection of Escherichia coli with bacteriophage T1.
    Keweloh HW; Bakker EP
    J Bacteriol; 1984 Oct; 160(1):354-9. PubMed ID: 6384196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The discrimination between Rb+ and K+ by Escherichia coli is changed after bacteriophage T7 infection.
    Kuhn A; Seiler HG
    Biochim Biophys Acta; 1984 Apr; 771(2):245-8. PubMed ID: 6367825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Productive phage infection in Escherichia coli with reduced internal levels of the major cations.
    Kuhn A; Kellenberger E
    J Bacteriol; 1985 Sep; 163(3):906-12. PubMed ID: 3161872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Formation of ion channels in the Escherichia coli cytoplasmic membrane after exposure to bacteriophages T4 and lambda].
    Daugelavichius RIu; Iagminas VT; Grinius LL; Ptashekas RS
    Biokhimiia; 1987 Jul; 52(7):1059-67. PubMed ID: 2444271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular cations and the movement of choline across the erythrocyte membrane.
    Martin K
    J Physiol; 1972 Jul; 224(1):207-30. PubMed ID: 5039981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.
    Karlish SJ; Stein WD
    J Physiol; 1982 Jul; 328():295-316. PubMed ID: 6290646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion specificity of cardiac sarcolemmal Na+/H+ antiporter.
    Periyasamy SM; Kakar SS; Garlid KD; Askari A
    J Biol Chem; 1990 Apr; 265(11):6035-41. PubMed ID: 2156838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K; Hirata H; Harold FM
    J Biol Chem; 1975 Feb; 250(4):1405-12. PubMed ID: 1089658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid release of 42K and 86Rb from an occluded state of the Na,K-pump in the presence of ATP or ADP.
    Forbush B
    J Biol Chem; 1987 Aug; 262(23):11104-15. PubMed ID: 2440883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between steps in 8-anilino-1-naphthalene sulfonate (ANS) fluorescence and changes in the energized membrane state and in intracellular and extracellular adenosine 5'-triphosphate (ATP) levels following bacteriophage T5 infection of Escherichia coli.
    Braun V; Oldmixon E
    J Supramol Struct; 1979; 10(3):329-47. PubMed ID: 158681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH and monovalent cations regulate cytosolic free Ca(2+) in E. coli.
    Naseem R; Holland IB; Jacq A; Wann KT; Campbell AK
    Biochim Biophys Acta; 2008 Jun; 1778(6):1415-22. PubMed ID: 18342619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NhaK, a novel monovalent cation/H+ antiporter of Bacillus subtilis.
    Fujisawa M; Kusumoto A; Wada Y; Tsuchiya T; Ito M
    Arch Microbiol; 2005 Sep; 183(6):411-20. PubMed ID: 16021482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cation content in poliovirus-infected HeLa cells.
    López-Rivas A; Castrillo JL; Carrasco L
    J Gen Virol; 1987 Feb; 68 ( Pt 2)():335-42. PubMed ID: 3029278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the Escherichia coli cell division protein FtsZ by a low-affinity interaction with monovalent cations.
    Tadros M; González JM; Rivas G; Vicente M; Mingorance J
    FEBS Lett; 2006 Sep; 580(20):4941-6. PubMed ID: 16930599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations.
    Sandvig K; Olsnes S
    J Biol Chem; 1988 Sep; 263(25):12352-9. PubMed ID: 2457582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of ion channels involved in the penetration of phage T4 DNA into Escherichia coli cells.
    Boulanger P; Letellier L
    J Biol Chem; 1988 Jul; 263(20):9767-75. PubMed ID: 2454920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation/proton antiport systems in Escherichia coli. Properties of the potassium/proton antiporter.
    Brey RN; Rosen BP; Sorensen EN
    J Biol Chem; 1980 Jan; 255(1):39-44. PubMed ID: 6985610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on (Na + -K + )-activated ATPase. XXX. Cation transport in Escherichia coli.
    Hafkenscheid JC; Bonting SL
    Comp Biochem Physiol B; 1971 Aug; 39(4):955-61. PubMed ID: 4257184
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.