BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6385035)

  • 1. A 31P NMR study on uptake and metabolism of hexose monophosphates in rat diaphragm muscle.
    Podo F; Carpinelli G; D'Agnolo G
    Physiol Chem Phys Med NMR; 1984; 16(1):39-48. PubMed ID: 6385035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise.
    Sapega AA; Sokolow DP; Graham TJ; Chance B
    Med Sci Sports Exerc; 1987 Aug; 19(4):410-20. PubMed ID: 3309542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus metabolites in different muscles of the rat leg by 31P image-selected in vivo spectroscopy.
    Madhu B; Lagerwall K; Soussi B
    NMR Biomed; 1996 Dec; 9(8):327-32. PubMed ID: 9176886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study.
    Stewart LC; Deslauriers R; Kupriyanov VV
    J Mol Cell Cardiol; 1994 Oct; 26(10):1377-92. PubMed ID: 7869398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR.
    Baker AJ; Carson PJ; Miller RG; Weiner MW
    Muscle Nerve; 1994 Sep; 17(9):1002-9. PubMed ID: 8065387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study.
    Taylor DJ; Bore PJ; Styles P; Gadian DG; Radda GK
    Mol Biol Med; 1983 Jul; 1(1):77-94. PubMed ID: 6679873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous metabolic changes in the calf muscle of the rat during ischaemia-reperfusion: in vivo analysis by 31P nuclear magnetic resonance chemical shift imaging and 1H magnetic resonance imaging.
    Morikawa S; Inubushi T; Kito K
    Cardiovasc Surg; 1993 Aug; 1(4):337-42. PubMed ID: 8076056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of crossclamping the descending aorta on the high-energy phosphates of myocardium and skeletal muscle. A phosphorus 31-nuclear magnetic resonance study.
    Balschi JA; Henderson T; Bradley EL; Gelman S
    J Thorac Cardiovasc Surg; 1993 Aug; 106(2):346-56. PubMed ID: 8341075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 31P-NMR studies on an animal model of human defective muscle glycolysis.
    Kuwabara T; Yuasa T; Miyatake T
    Muscle Nerve; 1986 Feb; 9(2):138-43. PubMed ID: 3951487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique aspects of human newborn cerebral metabolism evaluated with phosphorus nuclear magnetic resonance spectroscopy.
    Younkin DP; Delivoria-Papadopoulos M; Leonard JC; Subramanian VH; Eleff S; Leigh JS; Chance B
    Ann Neurol; 1984 Nov; 16(5):581-6. PubMed ID: 6508240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise.
    Sapega AA; Sokolow DP; Graham TJ; Chance B
    Med Sci Sports Exerc; 1993 Jun; 25(6):656-66. PubMed ID: 8321101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-destructive measurement of metabolites and tissue pH in the kidney by 31P nuclear magnetic resonance.
    Sehr PA; Bore PJ; Papatheofanis J; Radda GK
    Br J Exp Pathol; 1979 Dec; 60(6):632-41. PubMed ID: 44201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic and ionic coupling factors in amino acid-stimulated insulin release in pancreatic beta-HC9 cells.
    Doliba NM; Wehrli SL; Vatamaniuk MZ; Qin W; Buettger CW; Collins HW; Matschinsky FM
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1507-19. PubMed ID: 17264232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of high-energy substrates in fast- and slow-twitch muscle: comparison of enzymatic assay of biopsy with in vivo 31P nuclear magnetic resonance spectroscopy.
    Madapallimattam AG; Cross A; Nishio ML; Jeejeebhoy KN
    Anal Biochem; 1994 Feb; 217(1):103-9. PubMed ID: 8203725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline.
    Koch H; Okyayuz-Baklouti I; Norris D; Kogler H; Leibfritz D
    J Med; 1993; 24(1):47-66. PubMed ID: 8501403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of high-energy phosphorous compounds in skeletal muscle during glucose-induced thermogenesis in man. A 31P MR spectroscopy study.
    Thomsen C; Jensen KE; Astrup A; Bülow J; Henriksen O
    Acta Physiol Scand; 1989 Nov; 137(3):335-9. PubMed ID: 2596328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transsarcolemmal movement of inorganic phosphate in glucose-perfused rat heart: a 31P nuclear magnetic resonance spectroscopic study.
    Polgreen KE; Kemp GJ; Clarke K; Radda GK
    J Mol Cell Cardiol; 1994 Feb; 26(2):219-28. PubMed ID: 8006983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of high-resolution 31P-labeled topical magnetic resonance spectroscopy to monitor in vivo tumor metabolism in rats.
    Irving MG; Simpson SJ; Field J; Doddrell DM
    Cancer Res; 1985 Feb; 45(2):481-6. PubMed ID: 3967223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative differential effects of rhodamine 123 on normal cells and human colon cancer cells by magnetic resonance spectroscopy.
    Singer S; Neuringer LJ; Thilly WG; Chen LB
    Cancer Res; 1993 Dec; 53(23):5808-14. PubMed ID: 8242640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of cold reperfusion as an indicator of viability in stored organs: a 31P NMR study in rat liver.
    Busza AL; Fuller BJ; Proctor E
    Cryobiology; 1994 Feb; 31(1):26-30. PubMed ID: 8156797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.