These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 6385847)

  • 1. Characterization of a halo-acid-tolerant variant of Clostridium botulinum B-aphis.
    Montville TJ
    Appl Environ Microbiol; 1984 Aug; 48(2):311-6. PubMed ID: 6385847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Germination of spores from Clostridium botulinum B-aphis and Ba410.
    Montville TJ; Jones SB; Conway LK; Sapers GM
    Appl Environ Microbiol; 1985 Oct; 50(4):795-800. PubMed ID: 3909964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic interaction between pH and NaCl in the limits of germination and outgrowth of Clostridium sporogenes and Group I Clostridium botulinum vegetative cells and spores after heat treatment.
    Boix E; Coroller L; Couvert O; Planchon S; van Vliet AHM; Brunt J; Peck MW; Rasetti-Escargueil C; Lemichez E; Popoff MR; André S
    Food Microbiol; 2022 Sep; 106():104055. PubMed ID: 35690448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a novel method to characterize the response of spores of non-proteolytic Clostridium botulinum types B, E and F to a wide range of germinants and conditions.
    Plowman J; Peck MW
    J Appl Microbiol; 2002; 92(4):681-94. PubMed ID: 11966909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of plating medium on heat activation requirement of Clostridium botulinum spores.
    Montville TJ
    Appl Environ Microbiol; 1981 Oct; 42(4):734-6. PubMed ID: 7039510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxin production by Clostridium botulinum in grass.
    Notermans S; Kozaki S; van Schothorst M
    Appl Environ Microbiol; 1979 Nov; 38(5):767-71. PubMed ID: 44443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.
    Chea FP; Chen Y; Montville TJ; Schaffner DW
    J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679.
    Diao MM; André S; Membré JM
    Int J Food Microbiol; 2014 Mar; 174():23-30. PubMed ID: 24448274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of water activity and pH on growth and toxin production by Clostridium botulinum type G.
    Briozzo J; de Lagarde EA; Chirife J; Parada JL
    Appl Environ Microbiol; 1986 Apr; 51(4):844-8. PubMed ID: 3518631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined high pressure and thermal processing on inactivation of type E and nonproteolytic type B and F spores of Clostridium botulinum.
    Skinner GE; Marshall KM; Morrissey TR; Loeza V; Patazca E; Reddy NR; Larkin JW
    J Food Prot; 2014 Dec; 77(12):2054-61. PubMed ID: 25474050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combined effect of sub-optimal temperature and sub-optimal pH on growth and toxin formation from spores of Clostridium botulinum.
    Graham AF; Lund BM
    J Appl Bacteriol; 1987 Nov; 63(5):387-93. PubMed ID: 3326865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unusually heavy contamination of honey products by Clostridium botulinum type F and Bacillus alvei.
    Nakano H; Sakaguchi G
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):171-7. PubMed ID: 1711989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypochlorite injury of Clostridium botulinum spores alters germination responses.
    Foegeding PM; Busta FF
    Appl Environ Microbiol; 1983 Apr; 45(4):1360-8. PubMed ID: 6305267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple modes of inhibition of spore germination and outgrowth by reduced pH and sorbate.
    Blocher JC; Busta FF
    J Appl Bacteriol; 1985 Nov; 59(5):469-78. PubMed ID: 3936834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of germinant binding by bacterial spores in acidic environments.
    Blocher JC; Busta FF
    Appl Environ Microbiol; 1985 Aug; 50(2):274-9. PubMed ID: 3931549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium botulinum growth and toxin production in tomato juice containing Aspergillus gracilis.
    Odlaug TE; Pflug IJ
    Appl Environ Microbiol; 1979 Mar; 37(3):496-504. PubMed ID: 36843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linden flower (Tilia spp.) as potential vehicle of Clostridium botulinum spores in the transmission of infant botulism.
    Bianco MI; Lúquez C; De Jong LI; Fernández RA
    Rev Argent Microbiol; 2009; 41(4):232-6. PubMed ID: 20085187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.