These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 6385851)
21. An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. Chandran A; Varghese S; Kandeler E; Thomas A; Hatha M; Mazumder A Int J Hyg Environ Health; 2011 Jun; 214(3):258-64. PubMed ID: 21316302 [TBL] [Abstract][Full Text] [Related]
23. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal. Huang X; Bo X; Zhao Y; Gao B; Wang Y; Sun S; Yue Q; Li Q Bioresour Technol; 2014 Aug; 165():116-21. PubMed ID: 24656485 [TBL] [Abstract][Full Text] [Related]
24. Aluminum sulfate (alum) application interactions with coupled metal and nutrient cycling in a hypereutrophic lake ecosystem. Nogaro G; Burgin AJ; Schoepfer VA; Konkler MJ; Bowman KL; Hammerschmidt CR Environ Pollut; 2013 May; 176():267-74. PubMed ID: 23454589 [TBL] [Abstract][Full Text] [Related]
25. Sulfate ion in raw water affects performance of high-basicity PACl coagulants produced by Al(OH) Chen Y; Nakazawa Y; Matsui Y; Shirasaki N; Matsushita T Water Res; 2020 Sep; 183():116093. PubMed ID: 32645580 [TBL] [Abstract][Full Text] [Related]
26. Breakage and regrowth of Al-humic flocs--effect of additional coagulant dosage. Yu WZ; Gregory J; Campos L Environ Sci Technol; 2010 Aug; 44(16):6371-6. PubMed ID: 20704237 [TBL] [Abstract][Full Text] [Related]
27. Comparison of E. coli, enterococci, and fecal coliform as indicators for brackish water quality assessment. Jin G; Jeng HW; Bradford H; Englande AJ Water Environ Res; 2004; 76(3):245-55. PubMed ID: 15338696 [TBL] [Abstract][Full Text] [Related]
28. Suitability of the traditional microbial indicators and their enumerating methods in the assessment of fecal pollution of subtropical freshwater environments. Chao KK; Chao CC; Chao WL J Microbiol Immunol Infect; 2003 Dec; 36(4):288-93. PubMed ID: 14723262 [TBL] [Abstract][Full Text] [Related]
29. Impact of recreation on recreational water quality of a small tropical stream. Phillip DA; Antoine P; Cooper V; Francis L; Mangal E; Seepersad N; Ragoo R; Ramsaran S; Singh I; Ramsubhag A J Environ Monit; 2009 Jun; 11(6):1192-8. PubMed ID: 19513450 [TBL] [Abstract][Full Text] [Related]
30. Removal efficiency of Gram-positive and Gram-negative bacteria using a natural coagulant during coagulation, flocculation, and sedimentation processes. Sha'arani S; Azizan SNF; Md Akhir FN; Muhammad Yuzir MA; Othman N; Zakaria Z; Mohd Noor MJM; Hara H Water Sci Technol; 2019 Nov; 80(9):1787-1795. PubMed ID: 32039910 [TBL] [Abstract][Full Text] [Related]
31. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part I. Case of aluminium sulphate. Van Hullebusch E; Deluchat V; Chazal PM; Baudu M Environ Pollut; 2002; 120(3):617-26. PubMed ID: 12442785 [TBL] [Abstract][Full Text] [Related]
32. Determination of the effect of aluminium sulphate on natural microbial coenoses in experiment. Panasenkov YuV J Hyg Epidemiol Microbiol Immunol; 1987; 31(3):279-86. PubMed ID: 3119701 [TBL] [Abstract][Full Text] [Related]
33. Effects of powdered activated carbon on the coagulation-flocculation process in humic acid and humic acid-kaolin water treatment. Huang X; Wan Y; Shi B; Shi J Chemosphere; 2020 Jan; 238():124637. PubMed ID: 31470312 [TBL] [Abstract][Full Text] [Related]
34. The effect of alum coagulation for in-lake treatment of toxic Microcystis and other cyanobacteria related organisms in microcosm experiments. Han J; Jeon BS; Futatsugi N; Park HD Ecotoxicol Environ Saf; 2013 Oct; 96():17-23. PubMed ID: 23856121 [TBL] [Abstract][Full Text] [Related]
35. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage. Guan XH; Chen GH; Shang C Water Res; 2005 Sep; 39(15):3433-40. PubMed ID: 16095658 [TBL] [Abstract][Full Text] [Related]
36. Comparative survival of indicator bacteria and enteric pathogens in well water. McFeters GA; Bissonnette GK; Jezeski JJ; Thomson CA; Stuart DG Appl Microbiol; 1974 May; 27(5):823-9. PubMed ID: 4598219 [TBL] [Abstract][Full Text] [Related]
37. NUTRIENT REMOVAL FROM SECONDARY EFFLUENT BY ALUM FLOCCULATION AND LIME PRECIPITATION. MALHOTRA SK; LEE GF; ROHLICH GA Air Water Pollut; 1964 Sep; 8():487-500. PubMed ID: 14215806 [No Abstract] [Full Text] [Related]
38. Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters. Wanjugi P; Sivaganesan M; Korajkic A; McMinn B; Kelty CA; Rhodes E; Cyterski M; Zepp R; Oshima K; Stachler E; Kinzelman J; Kurdas SR; Citriglia M; Hsu FC; Acrey B; Shanks OC Water Res; 2018 Sep; 140():200-210. PubMed ID: 29715644 [TBL] [Abstract][Full Text] [Related]
39. Influential factors of formation kinetics of flocs produced by water treatment coagulants. Wu C; Wang L; Hu B; Ye J J Environ Sci (China); 2013 May; 25(5):1015-22. PubMed ID: 24218833 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge. Sun Y; Fan W; Zheng H; Zhang Y; Li F; Chen W PLoS One; 2015; 10(6):e0130683. PubMed ID: 26121132 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]