These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 6386041)
1. An antibody probe to determine the native species of glycinamide ribonucleotide transformylase in chicken liver. Young M; Sammons RD; Mueller WT; Benkovic SJ Biochemistry; 1984 Aug; 23(17):3979-86. PubMed ID: 6386041 [TBL] [Abstract][Full Text] [Related]
2. Structural and mechanistic studies on the HeLa and chicken liver proteins that catalyze glycinamide ribonucleotide synthesis and formylation and aminoimidazole ribonucleotide synthesis. Daubner SC; Young M; Sammons RD; Courtney LF; Benkovic SJ Biochemistry; 1986 May; 25(10):2951-7. PubMed ID: 3718932 [TBL] [Abstract][Full Text] [Related]
3. Isolation of a multifunctional protein with aminoimidazole ribonucleotide synthetase, glycinamide ribonucleotide synthetase, and glycinamide ribonucleotide transformylase activities: characterization of aminoimidazole ribonucleotide synthetase. Schrimsher JL; Schendel FJ; Stubbe J Biochemistry; 1986 Jul; 25(15):4356-65. PubMed ID: 3756144 [TBL] [Abstract][Full Text] [Related]
4. On the cofactor specificity of glycinamide ribonucleotide and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase from chicken liver. Smith GK; Mueller WT; Benkovic PA; Benkovic SJ Biochemistry; 1981 Mar; 20(5):1241-5. PubMed ID: 7225325 [TBL] [Abstract][Full Text] [Related]
5. A multifunctional protein possessing glycinamide ribonucleotide synthetase, glycinamide ribonucleotide transformylase, and aminoimidazole ribonucleotide synthetase activities in de novo purine biosynthesis. Daubner SC; Schrimsher JL; Schendel FJ; Young M; Henikoff S; Patterson D; Stubbe J; Benkovic SJ Biochemistry; 1985 Dec; 24(25):7059-62. PubMed ID: 4084560 [TBL] [Abstract][Full Text] [Related]
6. On the purification and mechanism of action of 5-aminoimidazole-4-carboxamide-ribonucleotide transformylase from chicken liver. Mueller WT; Benkovic SJ Biochemistry; 1981 Jan; 20(2):337-44. PubMed ID: 7470484 [TBL] [Abstract][Full Text] [Related]
7. Mammalian glycinamide ribonucleotide transformylase: purification and some properties. Caperelli CA Biochemistry; 1985 Mar; 24(6):1316-20. PubMed ID: 3986180 [TBL] [Abstract][Full Text] [Related]
8. Substrate specificity of glycinamide ribonucleotide transformylase from chicken liver. Antle VD; Liu D; McKellars BR; Caperelli CA; Hua M; Vince R J Biol Chem; 1996 Mar; 271(11):6045-9. PubMed ID: 8626389 [TBL] [Abstract][Full Text] [Related]
9. Carbocyclic glycinamide ribonucleotide is a substrate for glycinamide ribonucleotide transformylase. Caperelli CA; Price MF Arch Biochem Biophys; 1988 Jul; 264(1):340-2. PubMed ID: 3395127 [TBL] [Abstract][Full Text] [Related]
10. L(-)-10-Formyltetrahydrofolate is the cofactor for glycinamide ribonucleotide transformylase from chicken liver. Smith GK; Benkovic PA; Benkovic SJ Biochemistry; 1981 Jul; 20(14):4034-6. PubMed ID: 7284307 [TBL] [Abstract][Full Text] [Related]
11. Subcloning, characterization, and affinity labeling of Escherichia coli glycinamide ribonucleotide transformylase. Inglese J; Johnson DL; Shiau A; Smith JM; Benkovic SJ Biochemistry; 1990 Feb; 29(6):1436-43. PubMed ID: 2185839 [TBL] [Abstract][Full Text] [Related]
12. The human glycinamide ribonucleotide transformylase domain: purification, characterization, and kinetic mechanism. Caperelli CA; Giroux EL Arch Biochem Biophys; 1997 May; 341(1):98-103. PubMed ID: 9143358 [TBL] [Abstract][Full Text] [Related]
13. Mammalian glycinamide ribonucleotide transformylase. Kinetic mechanism and associated de novo purine biosynthetic activities. Caperelli CA J Biol Chem; 1989 Mar; 264(9):5053-7. PubMed ID: 2925682 [TBL] [Abstract][Full Text] [Related]
14. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli. Aimi J; Qiu H; Williams J; Zalkin H; Dixon JE Nucleic Acids Res; 1990 Nov; 18(22):6665-72. PubMed ID: 2147474 [TBL] [Abstract][Full Text] [Related]
15. Substrate specificity of human glycinamide ribonucleotide transformylase. Antle VD; Donat N; Hua M; Liao PL; Vince R; Carperelli CA Arch Biochem Biophys; 1999 Oct; 370(2):231-5. PubMed ID: 10577357 [TBL] [Abstract][Full Text] [Related]
16. N10-substituted 5,8-dideazafolate inhibitors of glycinamide ribonucleotide transformylase. Caperelli CA J Med Chem; 1987 Jul; 30(7):1254-6. PubMed ID: 3599031 [TBL] [Abstract][Full Text] [Related]
17. Effect of nitrous oxide-induced inactivation of vitamin B12 on glycinamide ribonucleotide transformylase and 5-amino-4-imidazole carboxamide transformylase. Deacon R; Perry J; Lumb M; Chanarin I Biochem Biophys Res Commun; 1983 Apr; 112(1):327-31. PubMed ID: 6838615 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the kinetic mechanism of Escherichia coli glycinamide ribonucleotide transformylase. Shim JH; Benkovic SJ Biochemistry; 1998 Jun; 37(24):8776-82. PubMed ID: 9628739 [TBL] [Abstract][Full Text] [Related]
19. 10-Formyl-5,8,10-trideazafolic acid (10-formyl-TDAF): a potent inhibitor of glycinamide ribonucleotide transformylase. Boger DL; Haynes NE; Kitos PA; Warren MS; Ramcharan J; Marolewski AE; Benkovic SJ Bioorg Med Chem; 1997 Sep; 5(9):1817-30. PubMed ID: 9354237 [TBL] [Abstract][Full Text] [Related]
20. Improvement in the efficiency of formyl transfer of a GAR transformylase hybrid enzyme. Nixon AE; Benkovic SJ Protein Eng; 2000 May; 13(5):323-7. PubMed ID: 10835105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]