These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6386047)

  • 1. Kinetics of incorporation of O6-methyldeoxyguanosine monophosphate during in vitro DNA synthesis.
    Snow ET; Foote RS; Mitra S
    Biochemistry; 1984 Sep; 23(19):4289-94. PubMed ID: 6386047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template.
    Papanicolaou C; Lecomte P; Ninio J
    J Mol Biol; 1986 Jun; 189(3):435-48. PubMed ID: 3537308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The incorporation of O6-methyldeoxyguanosine and O4-methyldeoxythymidine monophosphates into DNA by DNA polymerases I and alpha.
    Hall JA; Saffhill R
    Nucleic Acids Res; 1983 Jun; 11(12):4185-93. PubMed ID: 6866769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 8-14C-labeled O6-methyldeoxyguanosine and its deoxynucleotide copolymers.
    Abbott PJ; Mehta JR; Ludlum DB
    Biochemistry; 1980 Feb; 19(4):643-7. PubMed ID: 6986904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of chemical mutagenesis and carcinogenesis: effects on DNA replication of methylation at the O6-guanine position of dGTP.
    Toorchen D; Topal MD
    Carcinogenesis; 1983 Dec; 4(12):1591-7. PubMed ID: 6360407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the idling-turnover reaction of the large (Klenow) fragment of Escherichia coli DNA polymerase I.
    Mizrahi V; Benkovic PA; Benkovic SJ
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):231-5. PubMed ID: 3510431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base-pairing properties of O6-methylguanine in template DNA during in vitro DNA replication.
    Snow ET; Foote RS; Mitra S
    J Biol Chem; 1984 Jul; 259(13):8095-100. PubMed ID: 6376499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Klenow fragment-DNA interaction required for the incorporation of nucleotides opposite guanine and O6-methylguanine.
    Spratt TE
    Biochemistry; 1997 Oct; 36(43):13292-7. PubMed ID: 9341220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base sequence dependence of in vitro translesional DNA replication past a bulky lesion catalyzed by the exo- Klenow fragment of Pol I.
    Zhuang P; Kolbanovskiy A; Amin S; Geacintov NE
    Biochemistry; 2001 Jun; 40(22):6660-9. PubMed ID: 11380261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 2-chloro-2'-deoxyadenosine 5'-triphosphate on DNA synthesis in vitro by purified bacterial and viral DNA polymerases.
    Hentosh P; McCastlain JC; Blakley RL
    Biochemistry; 1991 Jan; 30(2):547-54. PubMed ID: 1703019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication of the base pair 6-thioguanine/5-methyl-2-pyrimidine with the large Klenow fragment of Escherichia coli DNA polymerase I.
    Rappaport HP
    Biochemistry; 1993 Mar; 32(12):3047-57. PubMed ID: 8457565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The incorporation of O6-methyldeoxyguanosine monophosphate and O4-methyldeoxythymidine monophosphate into polynucleotide templates leads to errors during subsequent in vitro DNA synthesis.
    Saffhill R; Hall JA
    Chem Biol Interact; 1985 Dec; 56(2-3):363-70. PubMed ID: 4075456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-Hydroxypyrimidine deoxynucleoside triphosphates are more efficiently incorporated into DNA by exonuclease-free Klenow fragment than 8-oxopurine deoxynucleoside triphosphates.
    Purmal AA; Kow YW; Wallace SS
    Nucleic Acids Res; 1994 Sep; 22(19):3930-5. PubMed ID: 7937115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of tyrosine 766-->serine mutant of Escherichia coli DNA polymerase I: template-specific effects.
    Desai SD; Pandey VN; Modak MJ
    Biochemistry; 1994 Oct; 33(39):11868-74. PubMed ID: 7918405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two DNA polymerases of Escherichia coli display distinct misinsertion specificities for 2-hydroxy-dATP during DNA synthesis.
    Kamiya H; Maki H; Kasai H
    Biochemistry; 2000 Aug; 39(31):9508-13. PubMed ID: 10924147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O-Alkyl deoxythymidines are recognized by DNA polymerase I as deoxythymidine or deoxycytidine.
    Singer B; Spengler SJ; Chavez F; Sagi J; Kúsmierek JT; Preston BD; Loeb LA
    IARC Sci Publ; 1987; (84):37-40. PubMed ID: 3315998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and properties of O6-methyldeoxyguanylic acid and its copolymers with deoxycytidylic acid.
    Mehta JR; Ludlum DB
    Biochim Biophys Acta; 1978 Dec; 521(2):770-8. PubMed ID: 737185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Insights into the Translesion Synthesis of Benzyl-Guanine from Molecular Dynamics Simulations: Structural Evidence of Mutagenic and Nonmutagenic Replication.
    Wilson KA; Wetmore SD
    Biochemistry; 2017 Apr; 56(13):1841-1853. PubMed ID: 28290677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase.
    Frey MW; Sowers LC; Millar DP; Benkovic SJ
    Biochemistry; 1995 Jul; 34(28):9185-92. PubMed ID: 7619819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.