These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6387707)

  • 21. Molecular properties of global suppressors of temperature-sensitive folding mutations in P22 tailspike endorhamnosidase.
    Lee SC; Koh H; Yu MH
    J Biol Chem; 1991 Dec; 266(34):23191-6. PubMed ID: 1835976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intragenic suppressors of folding defects in the P22 tailspike protein.
    Fane B; King J
    Genetics; 1991 Feb; 127(2):263-77. PubMed ID: 1825987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salmonella bacteriophage glycanases: endorhamnosidase activity of bacteriophages P27, 9NA, and KB1.
    Wollin R; Eriksson U; Lindberg AA
    J Virol; 1981 Jun; 38(3):1025-33. PubMed ID: 7017163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic and biochemical analysis of in vivo protein folding and subunit assembly.
    Goldenberg DP; Smith DH; King J
    Biopolymers; 1983 Jan; 22(1):125-9. PubMed ID: 6370323
    [No Abstract]   [Full Text] [Related]  

  • 25. In vitro folding pathway of phage P22 tailspike protein.
    Fuchs A; Seiderer C; Seckler R
    Biochemistry; 1991 Jul; 30(26):6598-604. PubMed ID: 1828991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of suppressors of temperature-sensitive folding mutations.
    Villafane R; Fleming A; Haase-Pettingell C
    J Bacteriol; 1994 Jan; 176(1):137-42. PubMed ID: 8282689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain.
    Danner M; Fuchs A; Miller S; Seckler R
    Eur J Biochem; 1993 Aug; 215(3):653-61. PubMed ID: 8354271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The folded conformation of phage P22 coat protein is affected by amino acid substitutions that lead to a cold-sensitive phenotype.
    Fong DG; Doyle SM; Teschke CM
    Biochemistry; 1997 Apr; 36(13):3971-80. PubMed ID: 9092827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface amino acids as sites of temperature-sensitive folding mutations in the P22 tailspike protein.
    Yu MH; King J
    J Biol Chem; 1988 Jan; 263(3):1424-31. PubMed ID: 3257215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutations that stabilize folding intermediates of phage P22 tailspike protein: folding in vivo and in vitro, stability, and structural context.
    Beissinger M; Lee SC; Steinbacher S; Reinemer P; Huber R; Yu MH; Seckler R
    J Mol Biol; 1995 May; 249(1):185-94. PubMed ID: 7776371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutations improving the folding of phage P22 tailspike protein affect its receptor binding activity.
    Baxa U; Steinbacher S; Weintraub A; Huber R; Seckler R
    J Mol Biol; 1999 Oct; 293(3):693-701. PubMed ID: 10543960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail-spike protein. I. Fine-structure mapping.
    Smith DH; Berget PB; King J
    Genetics; 1980 Oct; 96(2):331-52. PubMed ID: 7021307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of bacteriophage P22 tailspike mutant proteins with altered endorhamnosidase and capsid assembly activities.
    Schwarz JJ; Berget PB
    J Biol Chem; 1989 Nov; 264(33):20112-9. PubMed ID: 2531143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single amino acid substitutions globally suppress the folding defects of temperature-sensitive folding mutants of phage P22 coat protein.
    Aramli LA; Teschke CM
    J Biol Chem; 1999 Aug; 274(32):22217-24. PubMed ID: 10428787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature-sensitive mutations and second-site suppressor substitutions affect folding of the P22 tailspike protein in vitro.
    Mitraki A; Danner M; King J; Seckler R
    J Biol Chem; 1993 Sep; 268(27):20071-5. PubMed ID: 8376364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid substitutions influencing intracellular protein folding pathways.
    Mitraki A; King J
    FEBS Lett; 1992 Jul; 307(1):20-5. PubMed ID: 1639189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracellular trapping of a cytoplasmic folding intermediate of the phage P22 tailspike using iodoacetamide.
    Sather SK; King J
    J Biol Chem; 1994 Oct; 269(41):25268-76. PubMed ID: 7929218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstitution of the thermostable trimeric phage P22 tailspike protein from denatured chains in vitro.
    Seckler R; Fuchs A; King J; Jaenicke R
    J Biol Chem; 1989 Jul; 264(20):11750-3. PubMed ID: 2526122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Salmonella phage glycanases: substrate specificity of the phage P22 endo-rhamnosidase.
    Eriksson U; Svenson SB; Lönngren J; Lindberg AA
    J Gen Virol; 1979 Jun; 43(3):503-11. PubMed ID: 383902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of global suppressors for temperature-sensitive folding mutations of the P22 tailspike protein.
    Fane B; Villafane R; Mitraki A; King J
    J Biol Chem; 1991 Jun; 266(18):11640-8. PubMed ID: 1828803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.