These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 6388631)
1. Kinetics and mechanism of dissociation of cooperatively bound T4 gene 32 protein-single-stranded nucleic acid complexes. 1. Irreversible dissociation induced by sodium chloride concentration jumps. Lohman TM Biochemistry; 1984 Sep; 23(20):4656-65. PubMed ID: 6388631 [TBL] [Abstract][Full Text] [Related]
2. Kinetics and mechanism of dissociation of cooperatively bound T4 gene 32 protein-single-stranded nucleic acid complexes. 2. Changes in mechanism as a function of sodium chloride concentration and other solution variables. Lohman TM Biochemistry; 1984 Sep; 23(20):4665-75. PubMed ID: 6388632 [TBL] [Abstract][Full Text] [Related]
3. The N-terminal B-domain of T4 gene 32 protein modulates the lifetime of cooperatively bound Gp32-ss nucleic acid complexes. Villemain JL; Giedroc DP Biochemistry; 1996 Nov; 35(45):14395-404. PubMed ID: 8916926 [TBL] [Abstract][Full Text] [Related]
4. On the thermodynamics and kinetics of the cooperative binding of bacteriophage T4-coded gene 32 (helix destabilizing) protein to nucleic acid lattices. Kowalczykowski SC; Lonberg N; Newport JW; Paul LS; von Hippel PH Biophys J; 1980 Oct; 32(1):403-18. PubMed ID: 6264988 [TBL] [Abstract][Full Text] [Related]
5. DNA-binding properties of gene-5 protein encoded by bacteriophage M 13. 1. The kinetics of the dissociation of gene-5-protein.polynucleotide complexes upon addition of salt. Bulsink H; Harmsen BJ; Hilbers CW Eur J Biochem; 1988 Oct; 176(3):589-96. PubMed ID: 3262510 [TBL] [Abstract][Full Text] [Related]
6. Binding of IKe gene 5 protein to polynucleotides. Fluorescence binding experiments of IKe gene 5 protein and mutual cooperativity of IKe and M13 gene 5 proteins. de Jong EA; Harmsen BJ; Konings RN; Hilbers CW Biochemistry; 1987 Apr; 26(7):2039-46. PubMed ID: 3297140 [TBL] [Abstract][Full Text] [Related]
7. Ionic strength perturbation kinetics of gene 32 protein dissociation from its complex with single-stranded DNA. Peterman BF; Wu CW Biochemistry; 1978 Sep; 17(18):3889-92. PubMed ID: 359047 [TBL] [Abstract][Full Text] [Related]
8. Cooperative, excluded-site binding and its dynamics for the interaction of gene 5 protein with polynucleotides. Pörschke D; Rauh H Biochemistry; 1983 Sep; 22(20):4737-45. PubMed ID: 6354266 [TBL] [Abstract][Full Text] [Related]
10. Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity. Overman LB; Bujalowski W; Lohman TM Biochemistry; 1988 Jan; 27(1):456-71. PubMed ID: 3280021 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of single-stranded RNA and DNA interactions with oligolysines containing tryptophan. Effects of base composition. Mascotti DP; Lohman TM Biochemistry; 1993 Oct; 32(40):10568-79. PubMed ID: 7691177 [TBL] [Abstract][Full Text] [Related]
12. Gene V protein dimerization and cooperativity of binding of poly(dA). Terwilliger TC Biochemistry; 1996 Dec; 35(51):16652-64. PubMed ID: 8988001 [TBL] [Abstract][Full Text] [Related]
13. Structure calculations for single-stranded DNA complexed with the single-stranded DNA binding protein GP32 of bacteriophage T4: a remarkable DNA structure. van Amerongen H; Kuil ME; Scheerhagen MA; van Grondelle R Biochemistry; 1990 Jun; 29(23):5619-25. PubMed ID: 2386789 [TBL] [Abstract][Full Text] [Related]
14. A novel function for zinc(II) in a nucleic acid-binding protein. Contribution of zinc(II) toward the cooperativity of bacteriophage T4 gene 32 protein binding. Nadler SG; Roberts WJ; Shamoo Y; Williams KR J Biol Chem; 1990 Jun; 265(18):10389-94. PubMed ID: 2113053 [TBL] [Abstract][Full Text] [Related]
15. DNA "melting" proteins. III. Fluorescence "mapping" of the nucleic acid binding site of bacteriophage T4 gene 32-protein. Kelly RC; von Hippel PH J Biol Chem; 1976 Nov; 251(22):7229-39. PubMed ID: 791946 [TBL] [Abstract][Full Text] [Related]
16. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR; Bloom LB; Goodman MF; Beechem JM Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721 [TBL] [Abstract][Full Text] [Related]
17. Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode. Ferrari ME; Bujalowski W; Lohman TM J Mol Biol; 1994 Feb; 236(1):106-23. PubMed ID: 8107097 [TBL] [Abstract][Full Text] [Related]
18. Single-molecule FRET studies of the cooperative and non-cooperative binding kinetics of the bacteriophage T4 single-stranded DNA binding protein (gp32) to ssDNA lattices at replication fork junctions. Lee W; Gillies JP; Jose D; Israels BA; von Hippel PH; Marcus AH Nucleic Acids Res; 2016 Dec; 44(22):10691-10710. PubMed ID: 27694621 [TBL] [Abstract][Full Text] [Related]
19. The binding of T4 gene 32 protein to MS2 virus RNA and transfer RNA. Suau P; Toulmé JJ; Hélène C Nucleic Acids Res; 1980 Mar; 8(6):1357-72. PubMed ID: 6159594 [TBL] [Abstract][Full Text] [Related]
20. Investigation of binding between recA protein and single-stranded polynucleotides with the aid of a fluorescent deoxyribonucleic acid derivative. Silver MS; Fersht AR Biochemistry; 1983 Jun; 22(12):2860-6. PubMed ID: 6223658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]