BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6389180)

  • 1. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes.
    Hoben P; Uemura H; Yamao F; Cheung A; Swanson R; Sumner-Smith M; Söll D
    Fed Proc; 1984 Dec; 43(15):2972-6. PubMed ID: 6389180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
    Uemura H; Conley J; Yamao F; Rogers J; Söll D
    Protein Seq Data Anal; 1988; 1(6):479-85. PubMed ID: 2464170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase.
    Inokuchi H; Hoben P; Yamao F; Ozeki H; Söll D
    Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5076-80. PubMed ID: 6382258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for misaminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes.
    Perona JJ; Swanson RN; Rould MA; Steitz TA; Söll D
    Science; 1989 Dec; 246(4934):1152-4. PubMed ID: 2686030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching the amino acid specificity of an aminoacyl-tRNA synthetase.
    Agou F; Quevillon S; Kerjan P; Mirande M
    Biochemistry; 1998 Aug; 37(32):11309-14. PubMed ID: 9698378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The terminal adenosine of tRNA(Gln) mediates tRNA-dependent amino acid recognition by glutaminyl-tRNA synthetase.
    Liu J; Ibba M; Hong KW; Söll D
    Biochemistry; 1998 Jul; 37(27):9836-42. PubMed ID: 9657697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoacyl-tRNA synthetases optimize both cognate tRNA recognition and discrimination against noncognate tRNAs.
    Sherman JM; Söll D
    Biochemistry; 1996 Jan; 35(2):601-7. PubMed ID: 8555233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutaminyl-tRNA synthetase.
    Freist W; Gauss DH; Ibba M; Söll D
    Biol Chem; 1997 Oct; 378(10):1103-17. PubMed ID: 9372179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of three misacylating mutants of Escherichia coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP.
    Arnez JG; Steitz TA
    Biochemistry; 1996 Nov; 35(47):14725-33. PubMed ID: 8942633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):291-5. PubMed ID: 7506418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutaminyl-tRNA synthetase: from genetics to molecular recognition.
    Ibba M; Hong KW; Söll D
    Genes Cells; 1996 May; 1(5):421-7. PubMed ID: 9078373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
    Weygand-Durasević I; Schwob E; Söll D
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):2010-4. PubMed ID: 7680483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases.
    Balg C; Blais SP; Bernier S; Huot JL; Couture M; Lapointe J; Chênevert R
    Bioorg Med Chem; 2007 Jan; 15(1):295-304. PubMed ID: 17049867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure networks of E. coli glutaminyl-tRNA synthetase: effects of ligand binding.
    Sathyapriya R; Vishveshwara S
    Proteins; 2007 Aug; 68(2):541-50. PubMed ID: 17444518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow solvation dynamics at the active site of an enzyme: implications for catalysis.
    Guha S; Sahu K; Roy D; Mondal SK; Roy S; Bhattacharyya K
    Biochemistry; 2005 Jun; 44(25):8940-7. PubMed ID: 15966719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of functional connectivity between substrate recognition domains of Escherichia coli glutaminyl-tRNA synthetase.
    Kitabatake M; Ibba M; Hong KW; Söll D; Inokuchi H
    Mol Gen Genet; 1996 Oct; 252(6):717-22. PubMed ID: 8917315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity.
    Santoro SW; Wang L; Herberich B; King DS; Schultz PG
    Nat Biotechnol; 2002 Oct; 20(10):1044-8. PubMed ID: 12244330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.