These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1112 related articles for article (PubMed ID: 6389181)

  • 1. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6755-9. PubMed ID: 6359155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical role of the acceptor stem of tRNAs(Met) in their aminoacylation by Escherichia coli methionyl-tRNA synthetase.
    Meinnel T; Mechulam Y; Lazennec C; Blanquet S; Fayat G
    J Mol Biol; 1993 Jan; 229(1):26-36. PubMed ID: 8421312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of non-cognate tRNA anticodons.
    Schmitt E; Meinnel T; Panvert M; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Oct; 233(4):615-28. PubMed ID: 8411169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation.
    Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL
    Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases.
    Nureki O; Tateno M; Niimi T; Kohno T; Muramatsu T; Kanno H; Muto Y; Giege R; Yokoyama S
    Nucleic Acids Symp Ser; 1991; (25):165-6. PubMed ID: 1726806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure.
    Motorin Y; Bec G; Tewari R; Grosjean H
    RNA; 1997 Jul; 3(7):721-33. PubMed ID: 9214656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rules that govern tRNA identity in protein synthesis.
    McClain WH
    J Mol Biol; 1993 Nov; 234(2):257-80. PubMed ID: 8230212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
    Commans S; Lazard M; Delort F; Blanquet S; Plateau P
    J Mol Biol; 1998 May; 278(4):801-13. PubMed ID: 9614943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tRNA leucine identity and recognition sets.
    Tocchini-Valentini G; Saks ME; Abelson J
    J Mol Biol; 2000 May; 298(5):779-93. PubMed ID: 10801348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetase recognition determinants of E. coli valine transfer RNA.
    Horowitz J; Chu WC; Derrick WB; Liu JC; Liu M; Yue D
    Biochemistry; 1999 Jun; 38(24):7737-46. PubMed ID: 10387013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role of the anticodon in recognition of tRNA by aminoacyl-tRNA-synthetases].
    Kiselev LL
    Mol Biol (Mosk); 1983; 17(5):928-48. PubMed ID: 6355823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The modified wobble base inosine in yeast tRNAIle is a positive determinant for aminoacylation by isoleucyl-tRNA synthetase.
    Senger B; Auxilien S; Englisch U; Cramer F; Fasiolo F
    Biochemistry; 1997 Jul; 36(27):8269-75. PubMed ID: 9204872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis.
    Gale AJ; Shi JP; Schimmel P
    Biochemistry; 1996 Jan; 35(2):608-15. PubMed ID: 8555234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.