These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 6389530)
1. A comparative study of sulfhydryl groups required for the catalytic activity of gramicidin S synthetase and isoleucyl tRNA synthetase. Kanda M; Hori K; Kurotsu T; Miura S; Saito Y J Biochem; 1984 Sep; 96(3):701-11. PubMed ID: 6389530 [TBL] [Abstract][Full Text] [Related]
2. Reactive sulfhydryl groups involved in the aminoacyl adenylate activation reactions of the gramicidin S synthetase 2. Schlumbohm W; Vater J; Kleinkauf H Biol Chem Hoppe Seyler; 1985 Sep; 366(9):925-30. PubMed ID: 4074503 [TBL] [Abstract][Full Text] [Related]
3. A comparative study of essential arginine residues in Gramicidin S synthetase 2 and isoleucyl tRNA synthetase. Kanda M; Hori K; Miura S; Yamada Y; Saito Y J Biochem; 1982 Dec; 92(6):1951-7. PubMed ID: 6761339 [TBL] [Abstract][Full Text] [Related]
4. Sulfhydryl groups related to the catalytic activity of gramicidin S synthetase 1 of Bacillus brevis. Kanda M; Hori K; Kurotsu T; Miura S; Yamada Y; Saito Y J Biochem; 1981 Sep; 90(3):765-71. PubMed ID: 7309699 [TBL] [Abstract][Full Text] [Related]
5. Reactions of the sulfhydryl groups of alanyl-tRNA Synthetase. Chen ZQ; Kim JJ; Lai CS; Mehler AH Arch Biochem Biophys; 1984 Sep; 233(2):611-6. PubMed ID: 6091553 [TBL] [Abstract][Full Text] [Related]
7. Absence of pantothenic acid in gramicidin S synthetase 2 obtained from some mutants of Bacillus brevis. Hori K; Kanda M; Kurotsu T; Miura S; Yamada Y; Saito Y J Biochem; 1981 Aug; 90(2):439-47. PubMed ID: 6170631 [TBL] [Abstract][Full Text] [Related]
8. Modification of L-isoleucyl-tRNA synthetase with L-isoleucyl-bromomethyl ketone. The effect of the catalytic steps. Rainey P; Hammer-Raber B; Kula MR; Holler E Eur J Biochem; 1977 Aug; 78(1):239-49. PubMed ID: 334533 [TBL] [Abstract][Full Text] [Related]
9. Gramicidin S synthetase. Stability of reactive thioester intermediates and formation of 3-amino-2-piperidone. Gadow A; Vater J; Schlumbohm W; Palacz Z; Salnikow J; Kleinkauf H Eur J Biochem; 1983 May; 132(2):229-34. PubMed ID: 6188612 [TBL] [Abstract][Full Text] [Related]
10. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs. Freist W; Sternbach H; Cramer F Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973 [TBL] [Abstract][Full Text] [Related]
11. The mechanism of aminoacylation of transfer ribonucleic acid. Reactivity of enzyme-bound isoleucyl adenylate. Lõvgren TN; Heinonen J; Loftfield RB J Biol Chem; 1975 May; 250(10):3854-60. PubMed ID: 1092679 [TBL] [Abstract][Full Text] [Related]
12. Reaction mechanism of gramicidin S synthetase 1, phenylalanine racemase, of Bacillus brevis. Kanda M; Hori K; Kurotsu T; Miura S; Saito Y J Biochem; 1989 Apr; 105(4):653-9. PubMed ID: 2760021 [TBL] [Abstract][Full Text] [Related]
14. A stereochemical and positional isotope exchange study of the mechanism of activation of isoleucine by isoleucyl-tRNA synthetase from Escherichia coli. Lowe G; Sproat BS; Tansley G; Cullis PM Biochemistry; 1983 Mar; 22(5):1229-36. PubMed ID: 6340735 [TBL] [Abstract][Full Text] [Related]
15. Aminoacyl transfer RNA formation. VII. Lack of correlation between aminoacylation and PPi-ATP exchange catalyzed by isoleucyl-tRNA synthetase of Escherichia coli in the presence of various divalent cations. Takeda Y; Ohnishi T; Ogiso Y J Biochem; 1976 Sep; 80(3):471-5. PubMed ID: 185200 [TBL] [Abstract][Full Text] [Related]
16. Identification of different classes of nonessential sulfhydryl groups in Escherichia coli adenylosuccinate synthetase. Dong Q; Soans C; Liu F; Fromm HJ Arch Biochem Biophys; 1990 Jan; 276(1):77-84. PubMed ID: 2153366 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism of isoleucyl-tRNA synthetase of Escherichia coli K10. Effect of pH and chemical modification. Holler E; Schwarze G; Scheibl R; Hammer-Raber B Biochemistry; 1980 Nov; 19(23):5403-11. PubMed ID: 7004486 [No Abstract] [Full Text] [Related]
18. The monomeric glutamyl-tRNA synthetase of Escherichia coli. Purification and relation between its structural and catalytic properties. Kern D; Potier S; Boulanger Y; Lapointe J J Biol Chem; 1979 Jan; 254(2):518-24. PubMed ID: 368055 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites. Pettigrew DW Biochemistry; 1986 Aug; 25(16):4711-8. PubMed ID: 3021201 [TBL] [Abstract][Full Text] [Related]
20. Proteinchemical and kinetic features of gramicidin S synthetase. Vater J; Schlumbohm W; Salnikow J; Irrgang KD; Miklus M; Choli T; Kleinkauf H Biol Chem Hoppe Seyler; 1989 Sep; 370(9):1013-8. PubMed ID: 2610939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]