BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6389533)

  • 1. Effects of insulin receptor down-regulation on hexose transport in human erythrocytes.
    Dustin ML; Jacobson GR; Peterson SW
    J Biol Chem; 1984 Nov; 259(22):13660-3. PubMed ID: 6389533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer.
    Carruthers A; Melchior DL
    Biochim Biophys Acta; 1983 Feb; 728(2):254-66. PubMed ID: 6681982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C.
    Wheeler TJ
    Biochim Biophys Acta; 1986 Nov; 862(2):387-98. PubMed ID: 3778899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers.
    Ginsburg H
    Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexose transport in adipocytes.
    Gliemann J
    Biochem Soc Trans; 1982 Feb; 10(1):7-9. PubMed ID: 7037498
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of glucose transport by insulin and non-hormonal factors.
    Klip A
    Life Sci; 1982 Dec; 31(23):2537-48. PubMed ID: 6759832
    [No Abstract]   [Full Text] [Related]  

  • 7. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-trans and infinite-cis uptake of galactose in human erythrocytes.
    Ginsburg H; Stein WD
    Biochim Biophys Acta; 1975 Mar; 382(3):353-68. PubMed ID: 1125238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose and insulin chronically regulate insulin action via different mechanisms in BC3H1 myocytes. Effects on glucose transporter gene expression.
    Mayor P; Maianu L; Garvey WT
    Diabetes; 1992 Mar; 41(3):274-85. PubMed ID: 1372573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding requirements for the insulin-sensitive sugar transport system of rat adipocytes.
    Rees WD; Holman GD
    Biochim Biophys Acta; 1981 Aug; 646(2):251-60. PubMed ID: 7028115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes.
    Ginsburg H; Ram D
    Biochim Biophys Acta; 1975 Mar; 382(3):369-76. PubMed ID: 1125239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new class of sugar analogues for use in the investigation of sugar transport.
    Midgley PJ; Parkar BA; Holman GD
    Biochim Biophys Acta; 1985 Jan; 812(1):33-41. PubMed ID: 3881127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The monosaccharide transporter of the human erythrocyte. Transport activity upon reconstitution.
    Baldwin JM; Gorga JC; Lienhard GE
    J Biol Chem; 1981 Apr; 256(8):3685-9. PubMed ID: 7194337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport.
    Mullins RE; Langdon RG
    Biochemistry; 1980 Mar; 19(6):1199-205. PubMed ID: 7189410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport.
    Wheeler TJ; Whelan JD
    Biochemistry; 1988 Mar; 27(5):1441-50. PubMed ID: 3365399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin stimulation of adipocyte membrane glucose transport. A graded biologic response insensitive to bilayer lipid disordering.
    Hyslop PA; Kuhn CE; Sauerheber RD
    Biochem Pharmacol; 1987 Jul; 36(14):2305-10. PubMed ID: 3300653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of alpha- and beta-D-glucose by the intact human red cell.
    Carruthers A; Melchior DL
    Biochemistry; 1985 Jul; 24(15):4244-50. PubMed ID: 4052394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin.
    Takakura Y; Kuentzel SL; Raub TJ; Davies A; Baldwin SA; Borchardt RT
    Biochim Biophys Acta; 1991 Nov; 1070(1):1-10. PubMed ID: 1751515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pressure on glucose transport in human erythrocytes.
    Thorne SD; Hall AC; Lowe AG
    FEBS Lett; 1992 Apr; 301(3):299-302. PubMed ID: 1577170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC.
    Fincham DA; Mason DK; Young JD
    Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.