These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6389761)

  • 1. Transport and hydrolysis of antibacterial peptide analogues in Escherichia coli: backbone-modified aminoxy peptides.
    Payne JW; Morley JS; Armitage P; Payne GM
    J Gen Microbiol; 1984 Sep; 130(9):2253-65. PubMed ID: 6389761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial activity and uptake into Escherichia coli of backbone-modified analogues of small peptides.
    Morley JS; Payne JW; Hennessey TD
    J Gen Microbiol; 1983 Dec; 129(12):3701-8. PubMed ID: 6366119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake, Stability, and Activity of Antisense Anti-
    Yavari N; Goltermann L; Nielsen PE
    ACS Chem Biol; 2021 Mar; 16(3):471-479. PubMed ID: 33684286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptidases and proteases of Escherichia coli and Salmonella typhimurium.
    Miller CG
    Annu Rev Microbiol; 1975; 29():485-504. PubMed ID: 1101808
    [No Abstract]   [Full Text] [Related]  

  • 5. Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli.
    Goodell EW; Higgins CF
    J Bacteriol; 1987 Aug; 169(8):3861-5. PubMed ID: 3301822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The utilization of prolyl peptides by Escherichia coli.
    Payne JW
    Biochem J; 1971 Jun; 123(2):255-60. PubMed ID: 4942538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphonopeptides as substrates for peptide transport systems and peptidases of Escherichia coli.
    Atherton FR; Hall MJ; Hassall CH; Lambert RW; Lloyd WJ; Lord AV; Ringrose PS; Westmacott D
    Antimicrob Agents Chemother; 1983 Oct; 24(4):522-8. PubMed ID: 6360039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and hydrolysis of peptides by microorganisms.
    Payne JW
    Ciba Found Symp; 1977; (50):305-34. PubMed ID: 340177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Chemical-Intervention Strategy To Circumvent Peptide Hydrolysis by d-Stereoselective Peptidases.
    Bann SJ; Ballantine RD; McCallion CE; Qian PY; Li YX; Cochrane SA
    J Med Chem; 2019 Nov; 62(22):10466-10472. PubMed ID: 31657913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backbone-modified analogues of small peptides: transport and antibacterial activity.
    Morley JS; Hennessey TD; Payne JW
    Biochem Soc Trans; 1983 Dec; 11(6):798-800. PubMed ID: 6365652
    [No Abstract]   [Full Text] [Related]  

  • 11. Monitoring enzyme synthesis as a means of studying peptide transport and utilization in Escherichia coli.
    Bell G; Payne GM; Payne JW
    J Gen Microbiol; 1977 Feb; 98(2):485-91. PubMed ID: 323413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic degradation and transport of endothiopeptides into Escherichia coli K12 mutant strains.
    Nowak-Jary J; Andruszkiewicz R; Payne JW
    FEMS Microbiol Lett; 2008 Aug; 285(2):291-7. PubMed ID: 18557941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction. Membrane transport of peptides.
    Matthews DM
    Ciba Found Symp; 1977; (50):5-14. PubMed ID: 244390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotinylation facilitates the uptake of large peptides by Escherichia coli and other gram-negative bacteria.
    Walker JR; Altman E
    Appl Environ Microbiol; 2005 Apr; 71(4):1850-5. PubMed ID: 15812011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidase-deficient mutants of Escherichia coli.
    Miller CG; Schwartz G
    J Bacteriol; 1978 Aug; 135(2):603-11. PubMed ID: 355237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characteristics of peptide uptake in Streptococcus faecalis: studies on the transport of natural peptides and antibacterial phosphonopeptides.
    Nisbet TM; Payne JW
    J Gen Microbiol; 1982 Jun; 128(6):1357-64. PubMed ID: 6811693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of an L-alanine export system in Escherichia coli and isolation and characterization of export-deficient mutants.
    Hori H; Ando T; Isogai E; Yoneyama H; Katsumata R
    FEMS Microbiol Lett; 2011 Mar; 316(2):83-9. PubMed ID: 21208269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional differences between heme permeases: Serratia marcescens HemTUV permease exhibits a narrower substrate specificity (restricted to heme) than the Escherichia coli DppABCDF peptide-heme permease.
    Létoffé S; Delepelaire P; Wandersman C
    J Bacteriol; 2008 Mar; 190(6):1866-70. PubMed ID: 18178744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplicity of peptide permeases in Candida albicans: evidence from novel chromophoric peptides.
    McCarthy PJ; Nisbet LJ; Boehm JC; Kingsbury WD
    J Bacteriol; 1985 Jun; 162(3):1024-9. PubMed ID: 3888953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous exploitation of different peptide permeases by combinations of synthetic peptide smugglins can lead to enhanced antibacterial activity.
    Smith MW; Payne JW
    FEMS Microbiol Lett; 1990 Aug; 58(3):311-6. PubMed ID: 2227366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.