These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6391378)

  • 41. Marine heterotrophic bacteria in continuous culture, the bacterial carbon growth efficiency, and mineralization at excess substrate and different temperatures.
    Jiménez-Mercado A; Cajal-Medrano R; Maske H
    Microb Ecol; 2007 Jul; 54(1):56-64. PubMed ID: 17264994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars.
    Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP
    Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Use of modification of the flask method for determining the generation and production time of bacterial plankton].
    Imeshkenova TF; Shishkin BA
    Mikrobiologiia; 1973; 42(2):542-5. PubMed ID: 4597883
    [No Abstract]   [Full Text] [Related]  

  • 44. MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures.
    Kohlmann R; Hoffmann A; Geis G; Gatermann S
    Int J Med Microbiol; 2015; 305(4-5):469-79. PubMed ID: 25953498
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of the effect of delayed entry into 2 different blood culture systems (BACTEC 9240 and BacT/ALERT 3D) on culture positivity.
    Akan OA; Yildiz E
    Diagn Microbiol Infect Dis; 2006 Mar; 54(3):193-6. PubMed ID: 16427242
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of bacterial growth by the Malthus conductance meter.
    Baynes NC; Comrie J; Prain JH
    Med Lab Sci; 1983 Apr; 40(2):149-58. PubMed ID: 6350784
    [No Abstract]   [Full Text] [Related]  

  • 47. High-pressure microbial physiology.
    Marquis RE
    Adv Microb Physiol; 1976; 14(11):159-241. PubMed ID: 795275
    [No Abstract]   [Full Text] [Related]  

  • 48. A convenient and efficient method for growing and short-term storage of miniprep bacterial cultures.
    Lucas JM; Lang JC
    Biotechniques; 1993 Nov; 15(5):823. PubMed ID: 8267970
    [No Abstract]   [Full Text] [Related]  

  • 49. A new medium for the enumeration and subculture of bacteria from potable water.
    Reasoner DJ; Geldreich EE
    Appl Environ Microbiol; 1985 Jan; 49(1):1-7. PubMed ID: 3883894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere.
    Balch WE; Wolfe RS
    Appl Environ Microbiol; 1976 Dec; 32(6):781-91. PubMed ID: 827241
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [A new laboratory fermenter for cultivation of microorganisms by turbidostatic, chemostatic and "batch" procedures. II. Working procedure and examples for application].
    Ring K; Schlecht S
    Zentralbl Bakteriol Orig; 1970; 213(1):103-19. PubMed ID: 4916755
    [No Abstract]   [Full Text] [Related]  

  • 52. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: evaluation in selective and nonselective medium.
    Tassou CC; Panagou EZ; Samaras FJ; Galiatsatou P; Mallidis CG
    J Appl Microbiol; 2008 Jun; 104(6):1764-73. PubMed ID: 18298540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacterial growth rates above 90 degrees C in Yellowstone hot springs.
    Bott TL; Brock TD
    Science; 1969 Jun; 164(3886):1411-2. PubMed ID: 4891105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of microbial numbers in soils by using various culture media and temperatures.
    Vieira FC; Nahas E
    Microbiol Res; 2005; 160(2):197-202. PubMed ID: 15881837
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Semielectronic turbidimeter for automated monitoring of bacterial growth in test tubes.
    Marcelis JH; Versteeg H; Beck HJ; Vinke D
    Appl Environ Microbiol; 1980 Feb; 39(2):281-4. PubMed ID: 6990863
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ATTACHMENT AND GROWTH OF BACTERIA ON SURFACES OF CONTINUOUS-CULTURE VESSELS.
    LARSEN DH; DIMMICK RL
    J Bacteriol; 1964 Nov; 88(5):1380-7. PubMed ID: 14234796
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrode and electrolyte impedance in the detection of bacterial growth.
    Hause LL; Komorowski RA; Gayon F
    IEEE Trans Biomed Eng; 1981 May; 28(5):403-10. PubMed ID: 7016724
    [No Abstract]   [Full Text] [Related]  

  • 58. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments.
    Robador A; Brüchert V; Jørgensen BB
    Environ Microbiol; 2009 Jul; 11(7):1692-703. PubMed ID: 19292778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of laser scanning for the rapid and automated detection of bacteria in water samples.
    Reynolds DT; Fricker CR
    J Appl Microbiol; 1999 May; 86(5):785-95. PubMed ID: 10347873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimation of the most probable number with a programable pocket calculator.
    Koch AL
    Appl Environ Microbiol; 1982 Feb; 43(2):488-90. PubMed ID: 7036902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.