These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6391551)

  • 1. High-affinity microtubule protein-higher organism DNA complexes. Many-fold enrichment in repetitive mouse DNA sequences comprised of satellite DNAs.
    Marx KA; Denial T; Keller T
    Biochim Biophys Acta; 1984 Dec; 783(3):283-92. PubMed ID: 6391551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High affinity DNA-microtubule interactions: evidence for a conserved DNA-MAP interaction involving unusual high CsCl density repetitious DNA families.
    Marx KA; Denial T
    Mol Cell Biochem; 1992 Dec; 118(1):39-48. PubMed ID: 1488054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High affinity DNA-microtubule associated protein interaction.
    Marx KA
    Mol Cell Biochem; 1992 Jul; 113(1):55-61. PubMed ID: 1640936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The affinity of DNA-microtubule protein complexes and their disruption by tubulin binding drugs.
    Mello CM; Marx KA
    J Biomol Struct Dyn; 1992 Feb; 9(4):791-805. PubMed ID: 1616631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity and biological significance of microtubule-associated protein-DNA interactions in chick.
    Hancock JM; Burns RG
    Biochim Biophys Acta; 1987 Feb; 927(2):163-9. PubMed ID: 3814622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of DNA with the nuclear lamina in Ehrlich ascites tumor cells.
    Krachmarov C; Iovcheva C; Hancock R; Dessev G
    J Cell Biochem; 1986; 31(1):59-74. PubMed ID: 3722277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of human satellite DNA sequences associated with chemically resistant nonhistone polypeptide adducts.
    Pfütz M; Gileadi O; Werner D
    Chromosoma; 1992 Oct; 101(10):609-17. PubMed ID: 1424985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific interaction between mouse liver non-histone chromosomal proteins and mouse DNA demonstrated by a sequential DNA-protein binding procedure.
    Lesser BH; Comings DE
    Biochim Biophys Acta; 1978 Nov; 521(1):117-25. PubMed ID: 363155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments.
    Tolstonog GV; Wang X; Shoeman R; Traub P
    DNA Cell Biol; 2000 Nov; 19(11):647-77. PubMed ID: 11098216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel classes of mouse repeated DNAs.
    Manuelidis L
    Nucleic Acids Res; 1980 Aug; 8(15):3247-58. PubMed ID: 6160469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse satellite DNA isolated by Ag+ -- CsSO4 density gradients contains G+C rich, slow reassociating sequences.
    Ullu E; Lunadei M; Fantoni A
    Biochem Exp Biol; 1977; 13(2):141-5. PubMed ID: 616298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein D1 preferentially binds A + T-rich DNA in vitro and is a component of Drosophila melanogaster nucleosomes containing A + T-rich satellite DNA.
    Levinger L; Varshavsky A
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7152-6. PubMed ID: 6818540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primate repetitive DNAs: evidence for new satellite DNAs and similarities in non-satellite repetitive DNA sequence properties.
    Marx KA; Purdom IF; Jones KW
    Chromosoma; 1979 Aug; 73(2):153-61. PubMed ID: 114378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restriction endonuclease cleavage of satellite DNA in intact bovine nuclei.
    Lipchitz L; Axel R
    Cell; 1976 Oct; 9(2):355-64. PubMed ID: 987858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a small Mus musculus repetitive DNA library: identification of a new satellite sequence in Mus musculus.
    Pietras DF; Bennett KL; Siracusa LD; Woodworth-Gutai M; Chapman VM; Gross KW; Kane-Haas C; Hastie ND
    Nucleic Acids Res; 1983 Oct; 11(20):6965-83. PubMed ID: 6314268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-protein interactions of the rat liver non-histone chromosomal protein.
    Sevall JS; Cockburn A; Savage M; Bonner J
    Biochemistry; 1975 Feb; 14(4):782-9. PubMed ID: 1090299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Satellite DNA properties of the germ line limited DNA and the organization of the somatic genomes in the nematodes Ascaris suum and Parascaris equorum.
    Roth GE
    Chromosoma; 1979 Oct; 74(3):355-71. PubMed ID: 510087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-binding nonhistone proteins: DNA site reassociation.
    Jagodzinski LL; Chilton JC; Sevall JS
    Nucleic Acids Res; 1978 May; 5(5):1487-99. PubMed ID: 662691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the differential DNA melting profiles with the CsCl density profiles of DNA from Escherichia coli, cow, mouse, rat and chicken.
    Mayfield JE
    Biochim Biophys Acta; 1977 Jul; 477(2):97-101. PubMed ID: 328051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Increase in the quantity of highly repetitive sequences in extrachromosomal circular DNAs under inhibition of translation by cycloheximide].
    Krokhina TB; Raevskaia GB; Chernyĭ DI; Gar'kavtsev IV
    Biull Eksp Biol Med; 1991 May; 111(5):530-2. PubMed ID: 1878571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.