These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 6392565)

  • 41. Linker histone variants control chromatin dynamics during early embryogenesis.
    Saeki H; Ohsumi K; Aihara H; Ito T; Hirose S; Ura K; Kaneda Y
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5697-702. PubMed ID: 15821029
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
    Song F; Chen P; Sun D; Wang M; Dong L; Liang D; Xu RM; Zhu P; Li G
    Science; 2014 Apr; 344(6182):376-80. PubMed ID: 24763583
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The nature of protein association with chromatin.
    Doenecke D; McCarthy BJ
    Biochemistry; 1975 Apr; 14(7):1373-8. PubMed ID: 1092333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of the higher-order structure of chromatin by histones H1 and H5.
    Allan J; Cowling GJ; Harborne N; Cattini P; Craigie R; Gould H
    J Cell Biol; 1981 Aug; 90(2):279-88. PubMed ID: 7287811
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin.
    Khadake JR; Rao MR
    Biochemistry; 1995 Dec; 34(48):15792-801. PubMed ID: 7495811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An examination of models for chromatin transcription.
    Gould HJ; Cowling GJ; Harborne NR; Allan J
    Nucleic Acids Res; 1980 Nov; 8(22):5255-66. PubMed ID: 7465413
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Erythroid-specific gene chromatin has an altered association with linker histones.
    Ridsdale JA; Rattner JB; Davie JR
    Nucleic Acids Res; 1988 Jul; 16(13):5915-26. PubMed ID: 3399383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure.
    Poirier GG; de Murcia G; Jongstra-Bilen J; Niedergang C; Mandel P
    Proc Natl Acad Sci U S A; 1982 Jun; 79(11):3423-7. PubMed ID: 6808510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modification of rat liver chromatin by N-methyl-N'-nitro-N-nitrosoguanidine or N-ethyl-N'-nitro-N-nitrosoguanidine and template activity for RNA synthesis by Escherichia coli RNA polymerase after reconstitution.
    Yoda K; Sakiyama S; Fujimura S
    Biochim Biophys Acta; 1978 Dec; 521(2):677-88. PubMed ID: 367440
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of replication-dependent and replication-independent linker histone complexes: Tpr specifically promotes replication-dependent linker histone stability.
    Zhang P; Branson OE; Freitas MA; Parthun MR
    BMC Biochem; 2016 Oct; 17(1):18. PubMed ID: 27716023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of salt on the binding of the linker histone H1 to DNA and nucleosomes.
    Al-Natour Z; Hassan AH
    DNA Cell Biol; 2007 Jun; 26(6):445-52. PubMed ID: 17570768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reversible dissociation of linker histone from chromatin with preservation of internucleosomal repeat.
    Allan J; Staynov DZ; Gould H
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):885-9. PubMed ID: 6928686
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.
    Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ
    Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fine resolution of the poly ADP-ribosylated domains of polynucleosomal chromatin: DNA gene and integrity analysis; mechanism of histone H1 modification.
    Smulson M; Malik N; Wong M; Pomato N; Thraves P
    Princess Takamatsu Symp; 1983; 13():49-70. PubMed ID: 6418715
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Linker histone tails and N-tails of histone H3 are redundant: scanning force microscopy studies of reconstituted fibers.
    Leuba SH; Bustamante C; van Holde K; Zlatanova J
    Biophys J; 1998 Jun; 74(6):2830-9. PubMed ID: 9635737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of linker histone H1 on chromatin remodeling.
    Hill DA
    Biochem Cell Biol; 2001; 79(3):317-24. PubMed ID: 11467745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chromatin compaction at the mononucleosome level.
    Tóth K; Brun N; Langowski J
    Biochemistry; 2006 Feb; 45(6):1591-8. PubMed ID: 16460006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone.
    Karymov MA; Tomschik M; Leuba SH; Caiafa P; Zlatanova J
    FASEB J; 2001 Dec; 15(14):2631-41. PubMed ID: 11726539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HMG17 is a chromatin-specific transcriptional coactivator that increases the efficiency of transcription initiation.
    Paranjape SM; Krumm A; Kadonaga JT
    Genes Dev; 1995 Aug; 9(16):1978-91. PubMed ID: 7649479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Linker histones versus HMG1/2: a struggle for dominance?
    Zlatanova J; van Holde K
    Bioessays; 1998 Jul; 20(7):584-8. PubMed ID: 9723008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.