BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 6392824)

  • 1. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis.
    Rojas AM; Ehrenberg M; Andersson SG; Kurland CG
    Mol Gen Genet; 1984; 197(1):36-45. PubMed ID: 6392824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The elongation factor Tu from Escherichia coli, aminoacyl-tRNA, and guanosine tetraphosphate form a ternary complex which is bound by programmed ribosomes.
    Pingoud A; Gast FU; Block W; Peters F
    J Biol Chem; 1983 Dec; 258(23):14200-5. PubMed ID: 6358217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and thermodynamics of the interaction of elongation factor Tu with elongation factor Ts, guanine nucleotides, and aminoacyl-tRNA.
    Romero G; Chau V; Biltonen RL
    J Biol Chem; 1985 May; 260(10):6167-74. PubMed ID: 3846595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elongation factor Tu.guanosine 3'-diphosphate 5'-diphosphate complex increases the fidelity of proofreading in protein biosynthesis: mechanism for reducing translational errors introduced by amino acid starvation.
    Dix DB; Thompson RC
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2027-31. PubMed ID: 3515344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic suppression of translational errors by (p)ppGpp.
    Wagner EG; Ehrenberg M; Kurland CG
    Mol Gen Genet; 1982; 185(2):269-74. PubMed ID: 7045583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of animal mitochondrial EF-Tu.EF-Ts with aminoacyl-tRNA, guanine nucleotides, and ribosomes.
    Schwartzbach CJ; Spremulli LL
    J Biol Chem; 1991 Sep; 266(25):16324-30. PubMed ID: 1885567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct evidence of an elongation factor-Tu/Ts·GTP·Aminoacyl-tRNA quaternary complex.
    Burnett BJ; Altman RB; Ferguson A; Wasserman MR; Zhou Z; Blanchard SC
    J Biol Chem; 2014 Aug; 289(34):23917-27. PubMed ID: 24990941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elongation factor Ts directly facilitates the formation and disassembly of the Escherichia coli elongation factor Tu·GTP·aminoacyl-tRNA ternary complex.
    Burnett BJ; Altman RB; Ferrao R; Alejo JL; Kaur N; Kanji J; Blanchard SC
    J Biol Chem; 2013 May; 288(19):13917-28. PubMed ID: 23539628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts.
    Cai YC; Bullard JM; Thompson NL; Spremulli LL
    J Biol Chem; 2000 Jul; 275(27):20308-14. PubMed ID: 10801827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic mechanism of elongation factor Ts-catalyzed nucleotide exchange in elongation factor Tu.
    Gromadski KB; Wieden HJ; Rodnina MV
    Biochemistry; 2002 Jan; 41(1):162-9. PubMed ID: 11772013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes.
    Bullard JM; Cai YC; Zhang Y; Spremulli LL
    Biochim Biophys Acta; 1999 Jul; 1446(1-2):102-14. PubMed ID: 10395923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Elongation factor EF-Ts interacts with the aminoacyl-tRNA.EF-Tu.GTP complex].
    Kireeva ML; Bubunenko MG; Bushueva TL
    Mol Biol (Mosk); 1992; 26(1):104-9. PubMed ID: 1508161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The elongation factor Tu . guanosine tetraphosphate complex.
    Pingoud A; Block W
    Eur J Biochem; 1981 Jun; 116(3):631-4. PubMed ID: 7021151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic studies on the interactions of Escherichia coli K12 elongation factor Tu with GDP and elongation factor Ts.
    Chau V; Romero G; Biltonen RL
    J Biol Chem; 1981 Jun; 256(11):5591-6. PubMed ID: 7016856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of Saccharomyces cerevisiae mitochondrial elongation factor Tu.
    Rosenthal LP; Bodley JW
    J Biol Chem; 1987 Aug; 262(23):10955-9. PubMed ID: 3301847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on polypeptide-chain-elongation factors from an extreme thermophile, Thermus thermophilus HB8. 2. Catalytic properties.
    Arai K; Arai N; Nakamura S; Oshima T; Kaziro Y
    Eur J Biochem; 1978 Dec; 92(2):521-31. PubMed ID: 367783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies of the translational elongation cycle in mammalian mitochondria.
    Woriax VL; Bullard JM; Ma L; Yokogawa T; Spremulli LL
    Biochim Biophys Acta; 1997 May; 1352(1):91-101. PubMed ID: 9177487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.