These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6392871)

  • 1. Chromium(VI) and apparent phenotypic reversion in Salmonella TA100.
    Baker RS; Bonin AM; Arlauskas A; Tandon RK; Crisp PT; Ellis J
    Mutat Res; 1984; 138(2-3):127-32. PubMed ID: 6392871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium.
    Petrilli FL; De Flora S
    Appl Environ Microbiol; 1977 Apr; 33(4):805-9. PubMed ID: 326184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of the mutagenic activity of lead chromate using a battery of microbial tests.
    Nestmann ER; Matula TI; Douglas GR; Bora KC; Kowbel DJ
    Mutat Res; 1979 Apr; 66(4):357-65. PubMed ID: 379631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection by replica plating of false revertant colonies induced in the Salmonella-mammalian microsome assay by hexavalent chromium.
    Pedersen P; Thomsen E; Stern RM
    Environ Health Perspect; 1983 Sep; 51():227-30. PubMed ID: 6357773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromium (VI) comutagenesis: characterization of the interaction of K2CrO4 with azide.
    LaVelle JM
    Environ Mutagen; 1986; 8(5):717-25. PubMed ID: 3533528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the mutagenicity of soluble trivalent chromium compounds with that of potassium chromate.
    Langerwerf JS; Bakkeren HA; Jongen WM
    Ecotoxicol Environ Saf; 1985 Feb; 9(1):92-100. PubMed ID: 3886363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High sensitivity of Salmonella TA102 in detecting hexavalent chromium mutagenicity and its reversal by liver and lung preparations.
    Bennicelli C; Camoirano A; Petruzzelli S; Zanacchi P; De Flora S
    Mutat Res; 1983 Oct; 122(1):1-5. PubMed ID: 6353220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium chromate potentiates frameshift mutagenesis in E. coli and S. typhimurium.
    LaVelle JM
    Mutat Res; 1986 Jul; 171(1):1-10. PubMed ID: 3523229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of vitamin B2 on formation of chromium(V), alkali-labile sites, and lethality of sodium chromate(VI) in Chinese hamster V-79 cells.
    Sugiyama M; Ando A; Nakao K; Ueta H; Hidaka T; Ogura R
    Cancer Res; 1989 Nov; 49(22):6180-4. PubMed ID: 2553247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotoxicity assay of oil dispersants in bacteria (mutation, differential lethality, SOS DNA-repair) and yeast (mitotic crossing-over).
    De Flora S; De Renzi GP; Camoirano A; Astengo M; Basso C; Zanacchi P; Bennicelli C
    Mutat Res; 1985; 158(1-2):19-30. PubMed ID: 3900716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenic activity of copper(II) chromate and dichromate complexes with polypyridines.
    Szyba K; Golonka MC; Gasiorowski K; Urban J
    Biometals; 1992; 5(3):157-61. PubMed ID: 1421966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium (VI) potentiates mutagenesis by sodium azide but not ethyl methanesulfonate.
    LaVelle JM; Witmer CM
    Environ Mutagen; 1984; 6(3):311-20. PubMed ID: 6376084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nitrilotriacetic acid on the induction of gene mutations and sister-chromatid exchanges by insoluble chromium compounds.
    Venier P; Montaldi A; Gava C; Zentilin L; Tecchio G; Bianchi V; Paglialunga S; Levis AG
    Mutat Res; 1985 Jun; 156(3):219-28. PubMed ID: 3889637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of the mutagenicity of lead chromate-based pigments by encapsulation with silica.
    Connor TH; Pier SM
    Mutat Res; 1990 Oct; 245(2):129-33. PubMed ID: 2170838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead chromate-induced chromosome damage requires extracellular dissolution to liberate chromium ions but does not require particle internalization or intracellular dissolution.
    Xie H; Holmes AL; Wise SS; Gordon N; Wise JP
    Chem Res Toxicol; 2004 Oct; 17(10):1362-7. PubMed ID: 15487897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments.
    Tamindžija D; Chromikova Z; Spaić A; Barak I; Bernier-Latmani R; Radnović D
    World J Microbiol Biotechnol; 2019 Mar; 35(4):56. PubMed ID: 30900044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent antimutagenic effect of ultraviolet irradiation.
    Brunner DP; Stocker BA
    Mutat Res; 1983 Aug; 110(2):231-42. PubMed ID: 6348522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of C3H/10T1/2 mouse embryo cells to focus formation and anchorage independence by insoluble lead chromate but not soluble calcium chromate: relationship to mutagenesis and internalization of lead chromate particles.
    Patierno SR; Banh D; Landolph JR
    Cancer Res; 1988 Sep; 48(18):5280-8. PubMed ID: 3409252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of chromium(VI) to chromium(V) by rat liver cytosolic and microsomal fractions: is DT-diaphorase involved?
    Aiyar J; De Flora S; Wetterhahn KE
    Carcinogenesis; 1992 Jul; 13(7):1159-66. PubMed ID: 1379126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of solubilized chromium in the induction of morphological transformation of Syrian hamster embryo (SHE) cells by particulate chromium(VI) compounds.
    Elias Z; Poirot O; Baruthio F; Danière MC
    Carcinogenesis; 1991 Oct; 12(10):1811-6. PubMed ID: 1934262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.