These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 6393878)
1. Variable fluorescence of photosystem I particles and its application to the study of the structure and function of photosystem I. Tripathy BC; Draheim JE; Anderson GP; Gross EL Arch Biochem Biophys; 1984 Dec; 235(2):449-60. PubMed ID: 6393878 [TBL] [Abstract][Full Text] [Related]
2. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units. Bukhov N; Egorova E; Carpentier R Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447 [TBL] [Abstract][Full Text] [Related]
3. Characterization of photosynthetic electron transport in bundle sheath cells of maize. I. Ascorbate effectively stimulates cyclic electron flow around PSI. Ivanov B; Asada K; Kramer DM; Edwards G Planta; 2005 Feb; 220(4):572-81. PubMed ID: 15449056 [TBL] [Abstract][Full Text] [Related]
4. Subunit composition of Photosystem I complex that catalyzes light-dependent transfer of electrons from plastocyanin to ferredoxin. Takabe T; Iwasaki Y; Hibino T; Ando T J Biochem; 1991 Oct; 110(4):622-7. PubMed ID: 1778985 [TBL] [Abstract][Full Text] [Related]
5. A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. Pfannschmidt T; Schütze K; Brost M; Oelmüller R J Biol Chem; 2001 Sep; 276(39):36125-30. PubMed ID: 11468291 [TBL] [Abstract][Full Text] [Related]
6. How does iron deficiency disrupt the electron flow in photosystem I of lettuce leaves? Msilini N; Essemine J; Zaghdoudi M; Harnois J; Lachaâl M; Ouerghi Z; Carpentier R J Plant Physiol; 2013 Nov; 170(16):1400-6. PubMed ID: 23747063 [TBL] [Abstract][Full Text] [Related]
7. The eight-amino acid internal loop of PSI-C mediates association of low molecular mass iron-sulfur proteins with the P700-FX core in photosystem I. Naver H; Scott MP; Golbeck JH; Olsen CE; Scheller HV J Biol Chem; 1998 Jul; 273(30):18778-83. PubMed ID: 9668051 [TBL] [Abstract][Full Text] [Related]
8. PsaC subunit of photosystem I is oriented with iron-sulfur cluster F(B) as the immediate electron donor to ferredoxin and flavodoxin. Vassiliev IR; Jung YS; Yang F; Golbeck JH Biophys J; 1998 Apr; 74(4):2029-35. PubMed ID: 9545061 [TBL] [Abstract][Full Text] [Related]
9. The origin of the long-wavelength fluorescence emission band (77 degrees K) from photosystem I. Kuang TY; Argyroudi-Akoyunoglou JH; Nakatani HY; Watson J; Arntzen CJ Arch Biochem Biophys; 1984 Dec; 235(2):618-27. PubMed ID: 6393881 [TBL] [Abstract][Full Text] [Related]
10. The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction center core. Jensen PE; Gilpin M; Knoetzel J; Scheller HV J Biol Chem; 2000 Aug; 275(32):24701-8. PubMed ID: 10818090 [TBL] [Abstract][Full Text] [Related]
11. Fast chlorophyll a fluorescence induction (OJIP) phenotyping of chlorophyll-deficient wheat suggests that an enlarged acceptor pool size of Photosystem I helps compensate for a deregulated photosynthetic electron flow. Ferroni L; Živčak M; Kovar M; Colpo A; Pancaldi S; Allakhverdiev SI; Brestič M J Photochem Photobiol B; 2022 Sep; 234():112549. PubMed ID: 36049286 [TBL] [Abstract][Full Text] [Related]
12. Protein phosphorylation and Mg2+ influence light harvesting and electron transport in chloroplast thylakoid membrane material containing only the chlorophyll-a/b-binding light-harvesting complex of photosystem II and photosystem I. Harrison MA; Allen JF Eur J Biochem; 1992 Mar; 204(3):1107-14. PubMed ID: 1551390 [TBL] [Abstract][Full Text] [Related]
13. Interaction of plastocyanin with photosystem I: a chemical cross-linking study of the polypeptide that binds plastocyanin. Wynn RM; Malkin R Biochemistry; 1988 Aug; 27(16):5863-9. PubMed ID: 3056515 [TBL] [Abstract][Full Text] [Related]
14. Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I-ferredoxin complexes. Sétif PQ; Bottin H Biochemistry; 1995 Jul; 34(28):9059-70. PubMed ID: 7619805 [TBL] [Abstract][Full Text] [Related]
15. Knock-out of the chloroplast-encoded PSI-J subunit of photosystem I in Nicotiana tabacum. Hansson A; Amann K; Zygadlo A; Meurer J; Scheller HV; Jensen PE FEBS J; 2007 Apr; 274(7):1734-46. PubMed ID: 17331187 [TBL] [Abstract][Full Text] [Related]
16. Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I in Synechocystis sp. PCC 6803: evidence for submicrosecond and microsecond kinetics. Sétif PQ; Bottin H Biochemistry; 1994 Jul; 33(28):8495-504. PubMed ID: 8031783 [TBL] [Abstract][Full Text] [Related]
17. Chlorophyll-protein complexes of barley photosystem I. Bassi R; Simpson D Eur J Biochem; 1987 Mar; 163(2):221-30. PubMed ID: 3545828 [TBL] [Abstract][Full Text] [Related]
18. Photoreduction of NADP+ by isolated reaction centers of photosystem II: requirement for plastocyanin. Arnon DI; Barber J Proc Natl Acad Sci U S A; 1990 Aug; 87(15):5930-4. PubMed ID: 2198573 [TBL] [Abstract][Full Text] [Related]
19. Electron transfer between plastocyanin and P700 in highly-purified photosystem I reaction center complex. Effects of pH, cations, and subunit peptide composition. Takabe T; Ishikawa H; Niwa S; Itoh S J Biochem; 1983 Dec; 94(6):1901-11. PubMed ID: 6368528 [TBL] [Abstract][Full Text] [Related]
20. Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Joët T; Cournac L; Horvath EM; Medgyesy P; Peltier G Plant Physiol; 2001 Apr; 125(4):1919-29. PubMed ID: 11299371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]