BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 6393988)

  • 1. Chromatographic differentiation of the mitochondrial and cytosolic fumarases of rat liver and Baker's yeast and differential induction of two fumarases of Baker's yeast.
    Hiraga K; Inoue I; Manaka H; Tuboi S
    Biochem Int; 1984 Oct; 9(4):455-61. PubMed ID: 6393988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and structural comparisons of the cytosolic and mitochondrial fumarases from baker's yeast.
    Boonyarat D; Doonan S
    Int J Biochem; 1988; 20(10):1125-32. PubMed ID: 3073979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of synthesis and localization of mitochondrial and cytosolic fumarases in rat liver.
    Tuboi S; Sato M; Ono H; Kobayashi K; Hiraga K
    Adv Enzyme Regul; 1986; 25():461-84. PubMed ID: 3812085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End group analysis of the cytosolic and mitochondrial fumarases from rat liver.
    Kobayashi K; Tuboi S
    J Biochem; 1983 Sep; 94(3):707-13. PubMed ID: 6643416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of populations of mRNA coding fumarase in rat brain and liver.
    Hiraga K; Tuboi S
    Biochem Int; 1985 Apr; 10(4):681-7. PubMed ID: 4026873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the turnover rates of cytosolic and mitochondrial fumarases in rat liver.
    Kobayashi K; Kamimura T; Tuboi S
    J Biochem; 1982 May; 91(5):1511-8. PubMed ID: 7096303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical, catalytic, and immunochemical properties of fumarases crystallized separately from mitochondrial and cytosolic fractions of rat liver.
    Kobayashi K; Yamanishi T; Tuboi S
    J Biochem; 1981 Jun; 89(6):1923-31. PubMed ID: 7287666
    [No Abstract]   [Full Text] [Related]  

  • 8. Fumarase deficiency: a new cause of mitochondrial encephalomyopathy.
    Zinn AB; Kerr DS; Hoppel CL
    N Engl J Med; 1986 Aug; 315(8):469-75. PubMed ID: 3736629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single mRNA with two alternative in-phase AUG initiation sites.
    Tuboi S; Suzuki T; Sato M; Yoshida T
    Adv Enzyme Regul; 1990; 30():289-304. PubMed ID: 2403035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial import of human and yeast fumarase in live mammalian cells: retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence.
    Singh B; Gupta RS
    Biochem Biophys Res Commun; 2006 Aug; 346(3):911-8. PubMed ID: 16774737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single gene.
    Suzuki T; Sato M; Yoshida T; Tuboi S
    J Biol Chem; 1989 Feb; 264(5):2581-6. PubMed ID: 2914923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-assignment of the cytosolic and mitochondrial isoenzymes of fumarase from yeast.
    Mangan DJ; O'Sullivan NM; Doonan S
    Biochem Soc Trans; 1991 Feb; 19(1):18S. PubMed ID: 1645308
    [No Abstract]   [Full Text] [Related]  

  • 13. Intracellular distribution of fumarase in various animals.
    Akiba T; Hiraga K; Tuboi S
    J Biochem; 1984 Jul; 96(1):189-95. PubMed ID: 6333419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The presequence of fumarase is exposed to the cytosol during import into mitochondria.
    Karniely S; Regev-Rudzki N; Pines O
    J Mol Biol; 2006 Apr; 358(2):396-405. PubMed ID: 16530220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single base-pair change (ATG-->ATC) nullifies the activity of cytosolic fumarase in Saccharomyces cerevisiae.
    Wu M; Wong SM; Tan HM; Ting R
    Biochem Biophys Res Commun; 1995 Oct; 215(2):578-90. PubMed ID: 7487995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae.
    Stein I; Peleg Y; Even-Ram S; Pines O
    Mol Cell Biol; 1994 Jul; 14(7):4770-8. PubMed ID: 8007976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolving dual targeting of a prokaryotic protein in yeast.
    Burak E; Yogev O; Sheffer S; Schueler-Furman O; Pines O
    Mol Biol Evol; 2013 Jul; 30(7):1563-73. PubMed ID: 23462316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid.
    Peleg Y; Rokem JS; Goldberg I; Pines O
    Appl Environ Microbiol; 1990 Sep; 56(9):2777-83. PubMed ID: 2275532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual effect of dicyclohexylcarbodiimide on rat liver and yeast mitochondrial ATPase.
    Landry Y; Goffeau A
    Arch Int Physiol Biochim; 1973 Sep; 81(3):590. PubMed ID: 4127515
    [No Abstract]   [Full Text] [Related]  

  • 20. [Crystallization of three multiple forms of transketolase from baker's yeast].
    Kuimov AN; Konareva NV; Filippov MIu; Mikhaĭlov AM; Kochetov GA
    Biokhimiia; 1993 Nov; 58(11):1820-9. PubMed ID: 8268320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.