These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 6393988)

  • 1. Chromatographic differentiation of the mitochondrial and cytosolic fumarases of rat liver and Baker's yeast and differential induction of two fumarases of Baker's yeast.
    Hiraga K; Inoue I; Manaka H; Tuboi S
    Biochem Int; 1984 Oct; 9(4):455-61. PubMed ID: 6393988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and structural comparisons of the cytosolic and mitochondrial fumarases from baker's yeast.
    Boonyarat D; Doonan S
    Int J Biochem; 1988; 20(10):1125-32. PubMed ID: 3073979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of synthesis and localization of mitochondrial and cytosolic fumarases in rat liver.
    Tuboi S; Sato M; Ono H; Kobayashi K; Hiraga K
    Adv Enzyme Regul; 1986; 25():461-84. PubMed ID: 3812085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End group analysis of the cytosolic and mitochondrial fumarases from rat liver.
    Kobayashi K; Tuboi S
    J Biochem; 1983 Sep; 94(3):707-13. PubMed ID: 6643416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of populations of mRNA coding fumarase in rat brain and liver.
    Hiraga K; Tuboi S
    Biochem Int; 1985 Apr; 10(4):681-7. PubMed ID: 4026873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the turnover rates of cytosolic and mitochondrial fumarases in rat liver.
    Kobayashi K; Kamimura T; Tuboi S
    J Biochem; 1982 May; 91(5):1511-8. PubMed ID: 7096303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical, catalytic, and immunochemical properties of fumarases crystallized separately from mitochondrial and cytosolic fractions of rat liver.
    Kobayashi K; Yamanishi T; Tuboi S
    J Biochem; 1981 Jun; 89(6):1923-31. PubMed ID: 7287666
    [No Abstract]   [Full Text] [Related]  

  • 8. Fumarase deficiency: a new cause of mitochondrial encephalomyopathy.
    Zinn AB; Kerr DS; Hoppel CL
    N Engl J Med; 1986 Aug; 315(8):469-75. PubMed ID: 3736629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single mRNA with two alternative in-phase AUG initiation sites.
    Tuboi S; Suzuki T; Sato M; Yoshida T
    Adv Enzyme Regul; 1990; 30():289-304. PubMed ID: 2403035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial import of human and yeast fumarase in live mammalian cells: retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence.
    Singh B; Gupta RS
    Biochem Biophys Res Commun; 2006 Aug; 346(3):911-8. PubMed ID: 16774737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single gene.
    Suzuki T; Sato M; Yoshida T; Tuboi S
    J Biol Chem; 1989 Feb; 264(5):2581-6. PubMed ID: 2914923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-assignment of the cytosolic and mitochondrial isoenzymes of fumarase from yeast.
    Mangan DJ; O'Sullivan NM; Doonan S
    Biochem Soc Trans; 1991 Feb; 19(1):18S. PubMed ID: 1645308
    [No Abstract]   [Full Text] [Related]  

  • 13. Intracellular distribution of fumarase in various animals.
    Akiba T; Hiraga K; Tuboi S
    J Biochem; 1984 Jul; 96(1):189-95. PubMed ID: 6333419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The presequence of fumarase is exposed to the cytosol during import into mitochondria.
    Karniely S; Regev-Rudzki N; Pines O
    J Mol Biol; 2006 Apr; 358(2):396-405. PubMed ID: 16530220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single base-pair change (ATG-->ATC) nullifies the activity of cytosolic fumarase in Saccharomyces cerevisiae.
    Wu M; Wong SM; Tan HM; Ting R
    Biochem Biophys Res Commun; 1995 Oct; 215(2):578-90. PubMed ID: 7487995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae.
    Stein I; Peleg Y; Even-Ram S; Pines O
    Mol Cell Biol; 1994 Jul; 14(7):4770-8. PubMed ID: 8007976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolving dual targeting of a prokaryotic protein in yeast.
    Burak E; Yogev O; Sheffer S; Schueler-Furman O; Pines O
    Mol Biol Evol; 2013 Jul; 30(7):1563-73. PubMed ID: 23462316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid.
    Peleg Y; Rokem JS; Goldberg I; Pines O
    Appl Environ Microbiol; 1990 Sep; 56(9):2777-83. PubMed ID: 2275532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual effect of dicyclohexylcarbodiimide on rat liver and yeast mitochondrial ATPase.
    Landry Y; Goffeau A
    Arch Int Physiol Biochim; 1973 Sep; 81(3):590. PubMed ID: 4127515
    [No Abstract]   [Full Text] [Related]  

  • 20. [Crystallization of three multiple forms of transketolase from baker's yeast].
    Kuimov AN; Konareva NV; Filippov MIu; Mikhaĭlov AM; Kochetov GA
    Biokhimiia; 1993 Nov; 58(11):1820-9. PubMed ID: 8268320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.