These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6394065)

  • 1. Stereoelectronic control in peptide bond formation. Ab initio calculations and speculations on the mechanism of action of serine proteases.
    Gorenstein DG; Taira K
    Biophys J; 1984 Dec; 46(6):749-61. PubMed ID: 6394065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is there stereoelectronic control in formation and cleavage of tetrahedral intermediates?
    Perrin CL
    Acc Chem Res; 2002 Jan; 35(1):28-34. PubMed ID: 11790086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solution of nitrogen inversion in amidases.
    Syrén PO
    FEBS J; 2013 Jul; 280(13):3069-83. PubMed ID: 23506264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of action of aspartic proteases involves 'push-pull' catalysis.
    Polgár L
    FEBS Lett; 1987 Jul; 219(1):1-4. PubMed ID: 3036594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate limiting P-O(5') bond cleavage of RNA fragment: ab initio molecular orbital calculations on the base-catalyzed hydrolysis of phosphate.
    Taira K; Uchimaru T; Tanabe K; Uebayasi M; Nishikawa S
    Nucleic Acids Res; 1991 May; 19(10):2747-53. PubMed ID: 1710344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanistic study of the spontaneous hydrolysis of glycylserine as the simplest model for protein self-cleavage.
    Mihaylov TT; Parac-Vogt TN; Pierloot K
    Chemistry; 2014 Jan; 20(2):456-66. PubMed ID: 24311291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricting the ψ Torsion Angle Has Stereoelectronic Consequences on a Scissile Bond: An Electronic Structure Analysis.
    Strieter ER; Andrew TL
    Biochemistry; 2015 Sep; 54(37):5748-56. PubMed ID: 26332921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is there a weak H-bond --> LBHB transition on tetrahedral complex formation in serine proteases?
    Shokhen M; Albeck A
    Proteins; 2004 Feb; 54(3):468-77. PubMed ID: 14747995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serine proteases: an ab initio molecular dynamics study.
    De Santis L; Carloni P
    Proteins; 1999 Dec; 37(4):611-8. PubMed ID: 10651276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic oxyphosphoranes as model intermediates during splicing and cleavage of RNA: ab initio molecular orbital calculations on the conformational analysis.
    Taira K; Uebayasi M; Furukawa K
    Nucleic Acids Res; 1989 May; 17(10):3699-708. PubMed ID: 2471957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational studies of nucleophilic substitution at carbonyl carbon: the S(N)2 mechanism versus the tetrahedral intermediate in organic synthesis.
    Fox JM; Dmitrenko O; Liao LA; Bach RD
    J Org Chem; 2004 Oct; 69(21):7317-28. PubMed ID: 15471486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoelectronic control in addition of nucleophiles to an amidinium ion.
    Perrin CL; Young DB
    J Am Chem Soc; 2001 May; 123(19):4451-8. PubMed ID: 11457230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational analyses of the reaction coordinate of glycosidases.
    Davies GJ; Planas A; Rovira C
    Acc Chem Res; 2012 Feb; 45(2):308-16. PubMed ID: 21923088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-way effects between hydrogen bond and intramolecular resonance effect: an ab initio study on complexes of formamide and its derivatives with water.
    Liu T; Li H; Huang MB; Duan Y; Wang ZX
    J Phys Chem A; 2008 Jun; 112(24):5436-47. PubMed ID: 18503289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition and catalytic mechanism of HIV-1 aspartic protease.
    Silva AM; Cachau RE; Sham HL; Erickson JW
    J Mol Biol; 1996 Jan; 255(2):321-46. PubMed ID: 8551523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular orbital studies of enzyme activity: I: Charge relay system and tetrahedral intermediate in acylation of serine proteinases.
    Scheiner S; Kleier DA; Lipscomb WN
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2606-10. PubMed ID: 1058476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical evaluation of a model of the catalytic triads of serine and cysteine proteases by ab initio molecular orbital calculation.
    Nishihira J; Tachikawa H
    J Theor Biol; 1999 Feb; 196(4):513-9. PubMed ID: 10036203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.