BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 6394329)

  • 1. Type V collagen in human amnion is a 12 nm fibrillar component of the pericellular interstitium.
    Modesti A; Kalebic T; Scarpa S; Togo S; Grotendorst G; Liotta LA; Triche TJ
    Eur J Cell Biol; 1984 Nov; 35(2):246-55. PubMed ID: 6394329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural localization of laminin and type IV collagen in normal human breast.
    Fu HL; Moss J; Shore I; Slade MJ; Coombes RC
    Ultrastruct Pathol; 2002; 26(2):77-80. PubMed ID: 12036095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine structure of the glomerular basement membrane and immunolocalization of five basement membrane components to the lamina densa (basal lamina) and its extensions in both glomeruli and tubules of the rat kidney.
    Laurie GW; Leblond CP; Inoue S; Martin GR; Chung A
    Am J Anat; 1984 Apr; 169(4):463-81. PubMed ID: 6375342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anchoring of epithelia to underlying connective tissue: evidence of frayed ends of collagen fibrils directly merging with meshwork of lamina densa.
    Adachi E; Hayashi T
    J Electron Microsc (Tokyo); 1994 Oct; 43(5):264-71. PubMed ID: 7699306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Most anchoring fibrils in human skin originate and terminate in the lamina densa.
    Shimizu H; Ishiko A; Masunaga T; Kurihara Y; Sato M; Bruckner-Tuderman L; Nishikawa T
    Lab Invest; 1997 Jun; 76(6):753-63. PubMed ID: 9194852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anchoring fibrils form a complex network in human and rabbit cornea.
    Gipson IK; Spurr-Michaud SJ; Tisdale AS
    Invest Ophthalmol Vis Sci; 1987 Feb; 28(2):212-20. PubMed ID: 8591898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryofixation of basement membranes followed by freeze substitution or freeze drying demonstrates that they are composed of a tridimensional network of irregular cords.
    Chan FL; Inoue S; Leblond CP
    Anat Rec; 1993 Feb; 235(2):191-205. PubMed ID: 8420389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the complex basement membrane underlying the epithelium of the vas deferens in the rat.
    Clermont Y; Hermo L
    Anat Rec; 1988 May; 221(1):482-93. PubMed ID: 3389532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional network of cords: the main component of basement membranes.
    Inoue S; Leblond CP
    Am J Anat; 1988 Apr; 181(4):341-58. PubMed ID: 2968758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure and development of a thick basement membrane-like layer in the anchoring villi of macaque placentas.
    King BF; Blankenship TN
    Anat Rec; 1994 Apr; 238(4):498-506. PubMed ID: 8192247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane.
    Liotta LA; Goldfarb RH; Brundage R; Siegal GP; Terranova V; Garbisa S
    Cancer Res; 1981 Nov; 41(11 Pt 1):4629-36. PubMed ID: 6458354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type V and VI collagen for cohesion of dermal fibrillar structures.
    Kobayasi T; Karlsmark T
    J Submicrosc Cytol Pathol; 2006; 38(2-3):103-8. PubMed ID: 17784637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems.
    Lee DY; Cho KH
    Arch Dermatol Res; 2005 Jan; 296(7):296-302. PubMed ID: 15650892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Morphological study of the basement membrane of the developing lung in rats].
    Maruyama H
    Nihon Kyobu Shikkan Gakkai Zasshi; 1989 Oct; 27(10):1173-83. PubMed ID: 2693780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connective tissue of the livers of newborn and adult marmosets (Callithrix jacchus).
    Xu D; Schröter-Kermani C; Hinz N; Merker HJ
    Histol Histopathol; 1989 Oct; 4(4):479-92. PubMed ID: 2485198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular matrix in aged human ciliary body: an immunoelectron microscope study.
    Marshall GE; Konstas AG; Abraham S; Lee WR
    Invest Ophthalmol Vis Sci; 1992 Jul; 33(8):2546-60. PubMed ID: 1634352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical localization of basal lamina components in the developing rat epiphyseal cartilage canals.
    Kai K; Takagi K; Iyama K; Kitaoka M; Yoshioka H; Mizuta H; Usuku G
    Clin Orthop Relat Res; 1992 Jun; (279):292-8. PubMed ID: 1376222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunoelectron microscope demonstration of the basement membrane components laminin and type IV collagen in the dermal cylindroma.
    Kallioinen M
    J Pathol; 1985 Oct; 147(2):97-102. PubMed ID: 2999366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of collagen types I and V in the embryonic chicken cornea.
    Birk DE; Fitch JM; Linsenmayer TF
    Invest Ophthalmol Vis Sci; 1986 Oct; 27(10):1470-7. PubMed ID: 3531080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keratinocytes synthesize basal-lamina proteins in culture.
    Pruniéras M; Régnier M; Fougère S; Woodley D
    J Invest Dermatol; 1983 Jul; 81(1 Suppl):74s-81s. PubMed ID: 6190963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.