These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6394402)
1. Methylene blue-mediated hexose monophosphate shunt stimulation in human red blood cells in vitro: independence from intracellular oxidative injury. Baird JK Int J Biochem; 1984; 16(10):1053-8. PubMed ID: 6394402 [TBL] [Abstract][Full Text] [Related]
2. Effects of nine synthetic putative metabolites of primaquine on activity of the hexose monophosphate shunt in intact human red blood cells in vitro. Baird JK; McCormick GJ; Canfield CJ Biochem Pharmacol; 1986 Apr; 35(7):1099-106. PubMed ID: 3754446 [TBL] [Abstract][Full Text] [Related]
3. Oxidative activity of hydroxylated primaquine analogs. Non-toxicity to glucose-6-phosphate dehydrogenase-deficient human red blood cells in vitro. Baird JK; Davidson DE; Decker-Jackson JE Biochem Pharmacol; 1986 Apr; 35(7):1091-8. PubMed ID: 3754445 [TBL] [Abstract][Full Text] [Related]
4. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. Atamna H; Pascarmona G; Ginsburg H Mol Biochem Parasitol; 1994 Sep; 67(1):79-89. PubMed ID: 7838186 [TBL] [Abstract][Full Text] [Related]
5. An in vitro micro-volume procedure for rapid measurement of erythrocytic hexose monophosphate shunt activity. Baird JK; Decker-Jackson JE; Davidson DE Int J Biochem; 1984; 16(10):1049-52. PubMed ID: 6440819 [TBL] [Abstract][Full Text] [Related]
6. Defenses against oxidation in human erythrocytes: role of glutathione reductase in the activation of glucose decarboxylation by hemolytic drugs. Hohl RJ; Kennedy EJ; Frischer H J Lab Clin Med; 1991 Apr; 117(4):325-31. PubMed ID: 1901343 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of methylene blue stimulation of the hexose monophosphate shunt in erythrocytes. Metz EN; Balcerzak P; Sagone AL J Clin Invest; 1976 Oct; 58(4):797-802. PubMed ID: 965487 [TBL] [Abstract][Full Text] [Related]
8. Hexose monophosphate shunt activity in erythrocytes related to cell age. Ouwerkerk R; Damen P; de Haan K; Staal GE; Rijksen G Eur J Haematol; 1989 Nov; 43(5):441-7. PubMed ID: 2612618 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of hexose monophosphate shunt in young erythrocytes by pyrimidine nucleotides in hereditary pyrimidine 5' nucleotidase deficiency. David O; Ramenghi U; Camaschella C; Vota MG; Comino L; Pescarmona GP; Nicola P Eur J Haematol; 1991 Jul; 47(1):48-54. PubMed ID: 1868914 [TBL] [Abstract][Full Text] [Related]
10. Interrelations between glycolysis and the hexose monophosphate shunt in erythrocytes as studied on the basis of a mathematical model. Schuster R; Holzhütter HG; Jacobasch G Biosystems; 1988; 22(1):19-36. PubMed ID: 3191218 [TBL] [Abstract][Full Text] [Related]
11. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase. Gaetani GD; Parker JC; Kirkman HN Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443 [TBL] [Abstract][Full Text] [Related]
12. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis. Trotta RJ; Sullivan SG; Stern A Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393 [TBL] [Abstract][Full Text] [Related]
13. [Ferricyanide reduction by human erythrocytes in the presence of carriers of redox equivalents across the membrane]. Tsybyshev VP; Kuznetsov AN Izv Akad Nauk SSSR Biol; 1988; (1):64-74. PubMed ID: 3351101 [No Abstract] [Full Text] [Related]
14. Red blood cell oxidative metabolism induced by hydroxypyruvaldehyde. Thornalley PJ; Stern A Biochem Pharmacol; 1985 Apr; 34(8):1157-64. PubMed ID: 3994738 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of hexose monophosphate shunt activity in isolated murine lens by monitoring the potential of the ferricyanide--ferrocyanide system. Aseychev AV; Tjurin-Kuzmin AU; Stebeneva SA; Deyev AI Biochemistry (Mosc); 2001 Jan; 66(1):42-6. PubMed ID: 11240391 [TBL] [Abstract][Full Text] [Related]
16. [Potentiometric study of redox systems of human erythrocytes using potassium ferricyanide]. Balmukhanov BS; Zamula SV; Ataullakhanov FI Biokhimiia; 1980 May; 45(5):945-9. PubMed ID: 7378513 [TBL] [Abstract][Full Text] [Related]
17. Methaemoglobin production and reduction by methylene blue and the interaction of methylene blue with sodium nitrite in vivo. Marrs TC; Bright JE; Inns RH Hum Toxicol; 1989 Sep; 8(5):359-64. PubMed ID: 2807304 [TBL] [Abstract][Full Text] [Related]
18. Activation of the hexose monophosphate shunt in rat type II pneumocytes as an early marker of oxidative stress caused by cobalt particles. Hoet PH; Roesems G; Demedts MG; Nemery B Arch Toxicol; 2002 Feb; 76(1):1-7. PubMed ID: 11875618 [TBL] [Abstract][Full Text] [Related]
19. Hemoglobin, methylene blue and oxygen interactions in human red cells. Smith RP; Thron CD J Pharmacol Exp Ther; 1972 Dec; 183(3):549-58. PubMed ID: 4636392 [No Abstract] [Full Text] [Related]
20. Radiometric assessment of hexose monophosphate shunt capacity in erythrocytes of rhinoceroses. Paglia DE; Weber B; Baumgarten I; Harley EH Am J Vet Res; 2001 Jul; 62(7):1113-7. PubMed ID: 11453488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]