These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6394413)

  • 1. Nephrotoxic interactions between ketonic solvents and halogenated aliphatic chemicals.
    Hewitt WR; Brown EM
    Fundam Appl Toxicol; 1984 Dec; 4(6):902-8. PubMed ID: 6394413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-hexanone potentiation of [14C]chloroform hepatotoxicity: covalent interaction of a reactive intermediate with rat liver phospholipid.
    Cowlen MS; Hewitt WR; Schroeder F
    Toxicol Appl Pharmacol; 1984 May; 73(3):478-91. PubMed ID: 6719463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between the carbon skeleton length of ketonic solvents and potentiation of chloroform-induced hepatotoxicity in rats.
    Hewitt WR; Brown EM; Plaa GL
    Toxicol Lett; 1983 May; 16(3-4):297-304. PubMed ID: 6857725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of intrarenal biotransformation in chloroform-induced nephrotoxicity in rats.
    Smith JH; Hewitt WR; Hook JB
    Toxicol Appl Pharmacol; 1985 Jun; 79(1):166-74. PubMed ID: 4049404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose-response relationships in ketone-induced potentiation of chloroform hepato- and nephrotoxicity.
    Brown EM; Hewitt WR
    Toxicol Appl Pharmacol; 1984 Dec; 76(3):437-53. PubMed ID: 6506071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of biotransformation-detoxication in acetone-, 2-butanone-, and 2-hexanone-potentiated chloroform-induced hepatotoxicity.
    Hewitt LA; Valiquette C; Plaa GL
    Can J Physiol Pharmacol; 1987 Nov; 65(11):2313-8. PubMed ID: 3449191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms in 2-hexanone potentiation of chloroform hepatotoxicity.
    Cowlen MS; Hewitt WR; Schroeder F
    Toxicol Lett; 1984 Sep; 22(3):293-9. PubMed ID: 6091297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trihalomethane comparative toxicity: acute renal and hepatic toxicity of chloroform and bromodichloromethane following aqueous gavage.
    Lilly PD; Ross TM; Pegram RA
    Fundam Appl Toxicol; 1997 Nov; 40(1):101-10. PubMed ID: 9398492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the involvement of organelles in the mechanism of ketone-potentiated chloroform-induced hepatotoxicity.
    Hewitt LA; Palmason C; Masson S; Plaa GL
    Liver; 1990 Feb; 10(1):35-48. PubMed ID: 2308479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal and hepatic interactions between 2-hexanone and carbon tetrachloride in F-344 rats.
    Raisbeck MF; Brown EM; Hewitt WR
    Toxicol Lett; 1986 Apr; 31(1):15-21. PubMed ID: 3715912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications in rat hepatobiliary function following treatment with acetone, 2-butanone, 2-hexanone, mirex, or chlordecone and subsequently exposed to chloroform.
    Hewitt LA; Ayotte P; Plaa GL
    Toxicol Appl Pharmacol; 1986 May; 83(3):465-73. PubMed ID: 2422788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ketone potentiation of haloalkane-induced hepato- and nephrotoxicity. II. Implication of monooxygenases.
    Raymond P; Plaa GL
    J Toxicol Environ Health; 1995 Nov; 46(3):317-28. PubMed ID: 7473860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of chloroform nephrotoxicity. III. Renal and hepatic microsomal metabolism of chloroform in mice.
    Smith JH; Hook JB
    Toxicol Appl Pharmacol; 1984 May; 73(3):511-24. PubMed ID: 6719466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal relationships between biotransformation, detoxication, and chlordecone potentiation of chloroform-induced hepatotoxicity.
    Hewitt LA; Caillé G; Plaa GL
    Can J Physiol Pharmacol; 1986 Apr; 64(4):477-82. PubMed ID: 2425914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NOAEL and LOAEL determinations of acute hepatotoxicity for chloroform and bromodichloromethane delivered in an aqueous vehicle to F344 rats.
    Keegan TE; Simmons JE; Pegram RA
    J Toxicol Environ Health A; 1998 Sep; 55(1):65-75. PubMed ID: 9747604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of biotransformation in the potentiation of halocarbon hepatotoxicity by 2,5-hexanedione.
    Jernigan JD; Harbison RD
    J Toxicol Environ Health; 1982; 9(5-6):761-81. PubMed ID: 7120509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic activation of nephrotoxic haloalkanes.
    Kluwe WM; Hook JB
    Fed Proc; 1980 Nov; 39(13):3129-33. PubMed ID: 7428957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dichloroacetic acid pretreatment of male and female rats increases chloroform-induced hepatotoxicity.
    Yang HM; Davis ME
    Toxicology; 1997 Dec; 124(1):63-72. PubMed ID: 9392456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetone-induced potentiation of trihalomethane toxicity in male rats.
    Hewitt WR; Brown EM; Plaa GL
    Toxicol Lett; 1983 May; 16(3-4):285-96. PubMed ID: 6857724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time courses of hepatic injuries induced by chloroform and by carbon tetrachloride: comparison of biochemical and histopathological changes.
    Wang PY; Kaneko T; Tsukada H; Nakano M; Nakajima T; Sato A
    Arch Toxicol; 1997; 71(10):638-45. PubMed ID: 9332701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.