These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 6394717)

  • 1. Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans.
    Torosantucci A; Angiolella L; Filesi C; Cassone A
    J Gen Microbiol; 1984 Dec; 130(12):3285-93. PubMed ID: 6394717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response.
    Mattia E; Carruba G; Angiolella L; Cassone A
    J Bacteriol; 1982 Nov; 152(2):555-62. PubMed ID: 6752114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of mycelial type of development in Candida albicans by the antibiotic monorden and N-acetyl-D-glucosamine.
    Hrmová M; Drobnica L
    Mycopathologia; 1982 Jul; 79(1):55-64. PubMed ID: 6750407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reassessment of the effect of glucagon and nucleotides on Candida albicans germ tube formation.
    Zelada A; Castilla R; Passeron S; Cantore ML
    Cell Mol Biol (Noisy-le-grand); 1996 Jun; 42(4):567-76. PubMed ID: 8828912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of N-acetyl-D-glucosamine catabolic enzymes and germinative response in Candida albicans.
    Natarajan K; Rai YP; Datta A
    Biochem Int; 1984 Dec; 9(6):735-44. PubMed ID: 6395867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Induction of hyphal transformation, uptake and incorporation of N-acetyl-D-glucosamine in Candida albicans].
    Mattia E; Carruba G; Angiolella L; Cassone A
    Ann Ist Super Sanita; 1982; 18(3):493-6. PubMed ID: 6765081
    [No Abstract]   [Full Text] [Related]  

  • 9. Quantitative proteomics and metabolomics approaches to demonstrate N-acetyl-D-glucosamine inducible amino acid deprivation response as morphological switch in Candida albicans.
    Kamthan M; Mukhopadhyay G; Chakraborty N; Chakraborty S; Datta A
    Fungal Genet Biol; 2012 May; 49(5):369-78. PubMed ID: 22406769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starvation and germ tube formation in the exponential phase Candida albicans.
    Cho T; Hamatake H; Kaminishi H; Kuroki A; Suehara T; Suehara Y; Sakima T; Hagihara Y; Watanabe K
    Fukuoka Shika Daigaku Gakkai Zasshi; 1989; 16(4):510-21. PubMed ID: 2562099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Candida albicans on artificial D-glucose derivatives.
    Hrmová M; Sturdík E; Kosík M; Gemeiner P; Petrus L
    Z Allg Mikrobiol; 1983; 23(5):303-12. PubMed ID: 6353783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of tunicamycin on germ tube and yeast bud formation in Candida albicans.
    Chaffin WL
    J Gen Microbiol; 1985 Aug; 131(8):1853-61. PubMed ID: 3903038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans.
    Paranjape V; Roy BG; Datta A
    J Gen Microbiol; 1990 Nov; 136(11):2149-54. PubMed ID: 2079619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Germ tube formation from zonal rotor fractions of Candida albicans.
    Chaffin WL; Sogin SJ
    J Bacteriol; 1976 May; 126(2):771-6. PubMed ID: 770454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemin induces germ tube formation in Candida albicans.
    Casanova M; Cervera AM; Gozalbo D; Martínez JP
    Infect Immun; 1997 Oct; 65(10):4360-4. PubMed ID: 9317050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans.
    Leito JT; Ligtenberg AJ; Nazmi K; Veerman EC
    FEMS Yeast Res; 2009 Oct; 9(7):1102-10. PubMed ID: 19799638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans.
    Pendrak ML; Roberts DD
    Med Mycol; 2007 Feb; 45(1):61-71. PubMed ID: 17325946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of amigluracil and levorin on membrane permeability and protein synthesis in Candida albicans protoplasts].
    Obukhovskaia AS; Lishnevskaia EB; Tereshin IM
    Antibiotiki; 1978 Apr; 23(4):345-8. PubMed ID: 348091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata.
    Seyfarth F; Schliemann S; Elsner P; Hipler UC
    Int J Pharm; 2008 Apr; 353(1-2):139-48. PubMed ID: 18164151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proline-induced germ-tube formation in Candida albicans: role of proline uptake and nitrogen metabolism.
    Holmes AR; Shepherd MG
    J Gen Microbiol; 1987 Nov; 133(11):3219-28. PubMed ID: 3328774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.