These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 6394717)

  • 21. Transcriptional changes in Candida albicans Genes by both farnesol and high cell density at an early stage of morphogenesis in N-acetyl-D-glucosamine medium.
    Cho T; Aoyama T; Toyoda M; Nakayama H; Chibana H; Kaminishi H
    Nihon Ishinkin Gakkai Zasshi; 2007; 48(4):159-67. PubMed ID: 17975531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory effect of glucose and adenosine 3',5'-monophosphate on the synthesis of inducible N-acetylglucosamine catabolic enzymes in yeast.
    Singh B; Guptaroy B; Hasan G; Datta A
    Biochim Biophys Acta; 1980 Oct; 632(3):345-53. PubMed ID: 6251914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction and morphogenesis of chlamydospores in an agerminative variant of Candida albicans.
    Torosantucci A; Cassone A
    Sabouraudia; 1983 Mar; 21(1):49-57. PubMed ID: 6342175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological studies of N-acetylglucosamine induced germ tube formation by Candida albicans.
    Hubbard MJ; Sullivan PA; Shepherd MG
    Can J Microbiol; 1985 Aug; 31(8):696-701. PubMed ID: 3907814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth inhibitory effect of antibiotic tetaine on yeast and mycelial forms of Candida albicans.
    Milewski S; Chmara H; Borowski E
    Arch Microbiol; 1983 Aug; 135(2):130-6. PubMed ID: 6357134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The control of morphogenesis in Candida albicans.
    Shepherd MG; Sullivan PA
    J Dent Res; 1984 Mar; 63(3):435-40. PubMed ID: 6366000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of the actin gene is associated with the morphogenesis of Candida albicans.
    Paranjape V; Datta A
    Biochem Biophys Res Commun; 1991 Aug; 179(1):423-7. PubMed ID: 1883368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mutant of Candida albicans deficient in beta-N-acetylglucosaminidase (chitobiase).
    Jenkinson HF; Shepherd MG
    J Gen Microbiol; 1987 Aug; 133(8):2097-106. PubMed ID: 3327914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of glucose in the pH regulation of germ-tube formation in Candida albicans.
    Pollack JH; Hashimoto T
    J Gen Microbiol; 1987 Feb; 133(2):415-24. PubMed ID: 3309155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-acetylglucosamine-inducible CaGAP1 encodes a general amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans.
    Biswas S; Roy M; Datta A
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2597-2608. PubMed ID: 12949183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nutritional stress proteins in Candida albicans.
    Dabrowa N; Zeuthen ML; Howard DH
    J Gen Microbiol; 1990 Jul; 136(7):1387-91. PubMed ID: 2230722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between cell morphology and intracellular potassium concentration in Candida albicans.
    Watanabe H; Azuma M; Igarashi K; Ooshima H
    J Antibiot (Tokyo); 2006 May; 59(5):281-7. PubMed ID: 16883777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of the dimorphic transition of Candida albicans by the ornithine decarboxylase inhibitor 1,4-diaminobutanone: alterations in the glycoprotein composition of the cell wall.
    Martinez JP; Lopez-Ribot JL; Gil ML; Sentandreu R; Ruiz-Herrera J
    J Gen Microbiol; 1990 Oct; 136(10):1937-43. PubMed ID: 2269870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of levorin on incorporation of individual amino acids into proteins of membranes, ribosomes and cell sap of Candida albicans].
    Obukhovskaia AS; Lishnevskaia EB; Tereshin IM
    Biokhimiia; 1980 Jun; 45(6):1000-3. PubMed ID: 7011426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans.
    Alvarez FJ; Konopka JB
    Mol Biol Cell; 2007 Mar; 18(3):965-75. PubMed ID: 17192409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nutrient uptake by Candida albicans: the influence of cell surface mannoproteins.
    Braun PC
    Can J Microbiol; 1999 May; 45(5):353-9. PubMed ID: 10446710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans.
    Simonetti N; Strippoli V; Cassone A
    Nature; 1974 Jul; 250(464):344-6. PubMed ID: 4605454
    [No Abstract]   [Full Text] [Related]  

  • 38. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of Distinct Proline- or
    Sato T; Hoshida H; Akada R
    Biomed Res Int; 2020; 2020():7245782. PubMed ID: 33274221
    [No Abstract]   [Full Text] [Related]  

  • 40. A Candida albicans mutant impaired in the utilization of N-acetylglucosamine.
    Corner BE; Poulter RT; Shepherd MG; Sullivan PA
    J Gen Microbiol; 1986 Jan; 132(1):15-9. PubMed ID: 3519852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.