These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 6394717)

  • 61. Effect of iodide on glucose, N-acetylglucosamine and leucine incorporation into acid-insoluble fraction of pig thyroid proteins in vitro.
    GÅ‚owacka D; Stelmach H; Jaroszewicz L
    Endocrinol Exp; 1981 Sep; 15(3):163-70. PubMed ID: 6975203
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effect of 5-fluorocytosine on the blastospores and hyphae of Candida albicans.
    Polak A; Wain WH
    J Med Microbiol; 1979 Feb; 12(1):83-97. PubMed ID: 372535
    [TBL] [Abstract][Full Text] [Related]  

  • 63. N-acetyl-D-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase.
    Castilla R; Passeron S; Cantore ML
    Cell Signal; 1998 Nov; 10(10):713-9. PubMed ID: 9884022
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evidence for a glucose effect on N-acetylglucosamine catabolism in Candida albicans.
    Niimi M; Kamiyama A; Tokunaga M; Nakayama H
    Can J Microbiol; 1987 Apr; 33(4):345-7. PubMed ID: 3036326
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Differential profiles of soluble proteins during the initiation of morphogenesis in Candida albicans.
    Niimi M; Shepherd MG; Monk BC
    Arch Microbiol; 1996 Oct; 166(4):260-8. PubMed ID: 8824149
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gratuitous induction by N-acetylmannosamine of germ tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans.
    Sullivan PA; Shepherd MG
    J Bacteriol; 1982 Sep; 151(3):1118-22. PubMed ID: 6286591
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of two imidazole antimycotics, clotrimazole and miconazole on amino acid transport in Candida albicans.
    Yamaguchi H; Iwata K
    Sabouraudia; 1979 Sep; 17(3):311-22. PubMed ID: 394368
    [No Abstract]   [Full Text] [Related]  

  • 68. Nutrient-limited yeast growth in Candida albicans: effect on yeast-mycelial transition.
    Bell WM; Chaffin WL
    Can J Microbiol; 1980 Jan; 26(1):102-5. PubMed ID: 6996797
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans.
    Lee KL; Buckley HR; Campbell CC
    Sabouraudia; 1975 Jul; 13(2):148-53. PubMed ID: 808868
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Antibiotic tetaine--a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans.
    Milewski S; Chmara H; Borowski E
    Arch Microbiol; 1986 Aug; 145(3):234-40. PubMed ID: 3532988
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of carbon dioxide on the growth and form of Candida albicans.
    Sims W
    J Med Microbiol; 1986 Nov; 22(3):203-8. PubMed ID: 3095550
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of 5-fluorocytosine on protein synthesis and amino acid pool in Candida albicans.
    Polak A
    Sabouraudia; 1974 Nov; 12(3):309-19. PubMed ID: 4610823
    [No Abstract]   [Full Text] [Related]  

  • 73. A model for the germ tube formation and mycelial growth form of Candida albicans.
    Gow NA; Gooday GW
    Sabouraudia; 1984; 22(2):137-44. PubMed ID: 6374934
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of the dialysable serum inducer of germ-tube formation in Candida albicans.
    Hudson DA; Sciascia QL; Sanders RJ; Norris GE; Edwards PJB; Sullivan PA; Farley PC
    Microbiology (Reading); 2004 Sep; 150(Pt 9):3041-3049. PubMed ID: 15347762
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The secretion of N-acetylglucosaminidase during germ-tube formation in Candida albicans.
    Sullivan PA; McHugh NJ; Romana LK; Shepherd MG
    J Gen Microbiol; 1984 Sep; 130(9):2213-8. PubMed ID: 6389758
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cytoplasmic alkalinization during germ tube formation in Candida albicans.
    Stewart E; Gow NA; Bowen DV
    J Gen Microbiol; 1988 May; 134(5):1079-87. PubMed ID: 3058860
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Changes in glutathione metabolic enzymes during yeast-to-mycelium conversion of Candida albicans.
    Manavathu M; Gunasekaran S; Porte Q; Manavathu E; Gunasekaran M
    Can J Microbiol; 1996 Jan; 42(1):76-9. PubMed ID: 8595600
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation of N-acetylglucosamine kinase synthesis in yeast.
    Bhattacharya A; Banerjee S; Datta A
    Biochim Biophys Acta; 1974 Dec; 374(3):384-91. PubMed ID: 4373081
    [No Abstract]   [Full Text] [Related]  

  • 79. Variations in the response to N-acetyl-D-glucosamine by isolates of Candida albicans.
    Wain WH; Brayton AR; Cawson RA
    Mycopathologia; 1976 Jun; 58(1):27-9. PubMed ID: 778622
    [No Abstract]   [Full Text] [Related]  

  • 80. Protein synthesis during morphogenesis of Mucor racemosus.
    Orlowski M; Sypherd PS
    J Bacteriol; 1977 Oct; 132(1):209-18. PubMed ID: 914775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.