These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6395807)

  • 1. Enzyme-albumin polymers. New approaches to the use of enzymes in medicine.
    Poznansky MJ
    Appl Biochem Biotechnol; 1984; 10():41-56. PubMed ID: 6395807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-protein conjugates: new possibilities for enzyme therapy.
    Poznansky MJ
    Pharmacol Ther; 1983; 21(1):53-76. PubMed ID: 6353439
    [No Abstract]   [Full Text] [Related]  

  • 3. Insulin: carrier potential for enzyme and drug therapy.
    Poznansky MJ; Singh R; Singh B; Fantus G
    Science; 1984 Mar; 223(4642):1304-6. PubMed ID: 6367042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha1,4-Glucosidase-albumin polymers: in vitro properties and advantages for enzyme replacement therapy.
    Poznansky MJ; Bhardwaj D
    Can J Physiol Pharmacol; 1980 Mar; 58(3):322-5. PubMed ID: 6991081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunogenicity and antigenicity of soluble cross-linked enzyme/albumin polymers: Advantages for enzyme therapy.
    Remy MH; Poznansky MJ
    Lancet; 1978 Jul; 2(8080):68-70. PubMed ID: 78296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient therapy of Pompe disease by an acid α-glucosidase conjugate.
    Park K
    J Control Release; 2018 Jan; 269():441-442. PubMed ID: 29290222
    [No Abstract]   [Full Text] [Related]  

  • 7. Soluble enzyme--albumin conjugates: new possibilities for enzyme replacement therapy.
    Poznansky MJ
    Methods Enzymol; 1988; 137():566-74. PubMed ID: 3287095
    [No Abstract]   [Full Text] [Related]  

  • 8. Antibody-mediated targeting of alpha-1,4-glucosidase-albumin polymers to rat hepatocytes. A model for enzyme therapy.
    Poznansky MJ; Bhardwaj D
    Biochem J; 1981 Apr; 196(1):89-93. PubMed ID: 7030325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency enzyme replacement therapy in late-onset Pompe disease.
    Lin DS; Chiang MF; Ho CS; Hsiao CD; Lin CY; Wang NL; Chuang CK; Huang YW; Chang PC; Liu HL
    Muscle Nerve; 2013 Apr; 47(4):612-3. PubMed ID: 23322609
    [No Abstract]   [Full Text] [Related]  

  • 10. Hyaluronidase increases the biodistribution of acid alpha-1,4 glucosidase in the muscle of Pompe disease mice: an approach to enhance the efficacy of enzyme replacement therapy.
    Matalon R; Surendran S; Campbell GA; Michals-Matalon K; Tyring SK; Grady J; Cheng S; Kaye E
    Biochem Biophys Res Commun; 2006 Nov; 350(3):783-7. PubMed ID: 17027913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting enzyme albumin conjugates. Examining the magic bullet.
    Poznansky MJ
    Ann N Y Acad Sci; 1987; 507():211-9. PubMed ID: 3327414
    [No Abstract]   [Full Text] [Related]  

  • 12. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.
    Yi H; Sun T; Armstrong D; Borneman S; Yang C; Austin S; Kishnani PS; Sun B
    J Mol Med (Berl); 2017 May; 95(5):513-521. PubMed ID: 28154884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient therapy for refractory Pompe disease by mannose 6-phosphate analogue grafting on acid α-glucosidase.
    Basile I; Da Silva A; El Cheikh K; Godefroy A; Daurat M; Harmois A; Perez M; Caillaud C; Charbonné HV; Pau B; Gary-Bobo M; Morère A; Garcia M; Maynadier M
    J Control Release; 2018 Jan; 269():15-23. PubMed ID: 29108866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysosomal enzyme replacement using alpha 2-macroglobulin as a transport vehicle.
    Tsuji A; Oda R; Sakiyama K; Nagamune H; Itoh K; Kase R; Sakuraba H; Suzuki Y; Matsuda Y
    J Biochem; 1994 May; 115(5):937-44. PubMed ID: 7525546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ptosis in Pompe disease: common genetic background in infantile and adult series.
    Ravaglia S; Bini P; Garaghani KS; Danesino C
    J Neuroophthalmol; 2010 Dec; 30(4):389-90. PubMed ID: 21107130
    [No Abstract]   [Full Text] [Related]  

  • 16. IgE-Mediated Hypersensitivity and Desensitisation with Recombinant Enzymes in Pompe Disease and Type I and Type VI Mucopolysaccharidosis.
    Capanoglu M; Dibek Misirlioglu E; Azkur D; Vezir E; Guvenir H; Gunduz M; Toyran M; Civelek E; Kocabas CN
    Int Arch Allergy Immunol; 2016; 169(3):198-202. PubMed ID: 27144408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Potent Mannose 6-Phosphate Analogues for the Functionalization of Lysosomal Enzymes To Improve the Treatment of Pompe Disease.
    El Cheikh K; Basile I; Da Silva A; Bernon C; Cérutti P; Salgues F; Perez M; Maynadier M; Gary-Bobo M; Caillaud C; Cérutti M; Garcia M; Morère A
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14774-14777. PubMed ID: 27774736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice.
    Su J; Sherman A; Doerfler PA; Byrne BJ; Herzog RW; Daniell H
    Plant Biotechnol J; 2015 Oct; 13(8):1023-32. PubMed ID: 26053072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of bilateral ptosis on higher dose enzyme replacement therapy in Pompe disease.
    Yanovitch TL; Casey R; Banugaria SG; Kishnani PS
    J Neuroophthalmol; 2010 Jun; 30(2):165-6. PubMed ID: 20404746
    [No Abstract]   [Full Text] [Related]  

  • 20. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice.
    Zhu Y; Li X; McVie-Wylie A; Jiang C; Thurberg BL; Raben N; Mattaliano RJ; Cheng SH
    Biochem J; 2005 Aug; 389(Pt 3):619-28. PubMed ID: 15839836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.