These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 6397132)

  • 61. Respiratory inhibitors activate an Fnr-like regulatory protein in Paracoccus denitrificans: implications for the regulation of the denitrification pathway.
    Kucera I; Matchová I; Spiro S
    Biochem Mol Biol Int; 1994 Feb; 32(2):245-50. PubMed ID: 8019429
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation?
    Cole J
    FEMS Microbiol Lett; 1996 Feb; 136(1):1-11. PubMed ID: 8919448
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The role of light in nitrate metabolism in higher plants.
    Beevers L; Hageman RH
    Photophysiology; 1972; (7):85-113. PubMed ID: 4376838
    [No Abstract]   [Full Text] [Related]  

  • 64. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255.
    Starkenburg SR; Arp DJ; Bottomley PJ
    Environ Microbiol; 2008 Nov; 10(11):3036-42. PubMed ID: 18973623
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The function of cytoplasmic membrane of Paracoccus denitrificans in controlling the rate of reduction of terminal acceptors.
    Kucera I; Laucík J; Dadák V
    Eur J Biochem; 1983 Oct; 136(1):135-40. PubMed ID: 6684550
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Aspects of the control and organization of bacterial electron transport.
    Ferguson SJ
    Biochem Soc Trans; 1982 Aug; 10(4):198-200. PubMed ID: 6890481
    [No Abstract]   [Full Text] [Related]  

  • 68. A simple model for diauxic growth of denitrifying bacteria.
    Casasús AI; Hamilton RK; Svoronos SA; Koopman B
    Water Res; 2005 May; 39(9):1914-20. PubMed ID: 15899290
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Formate-nitrite reduction in Escherchia coli K12. 1. Physiological study of the system.
    Abou-Jaoudé A; Chippaux M; Pascal MC
    Eur J Biochem; 1979 Apr; 95(2):309-14. PubMed ID: 37075
    [No Abstract]   [Full Text] [Related]  

  • 70. Possible mechanism for discrimination between nitrate and nitrite by nitrate reductases.
    Gardner CD; Hyde MR; Mabbs FE
    Nature; 1975 Feb; 253(5493):623-5. PubMed ID: 1113849
    [No Abstract]   [Full Text] [Related]  

  • 71. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.
    Simon J; Sänger M; Schuster SC; Gross R
    Mol Microbiol; 2003 Jul; 49(1):69-79. PubMed ID: 12823811
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species.
    Yamasaki H; Sakihama Y
    FEBS Lett; 2000 Feb; 468(1):89-92. PubMed ID: 10683447
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Potential for aerobic NO
    Huang YS; An Q; Zhao B; Lv QH; Guo JS
    Arch Microbiol; 2018 Jan; 200(1):147-158. PubMed ID: 28879417
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Isolation and characterization of a chlorate-resistant mutant (Clo- R) of the symbiotic cyanobacterium Nostoc ANTH: heterocyst formation and N(2)-fixation in the presence of nitrate, and evidence for separate nitrate and nitrite transport systems.
    Bhattacharya J; Singh AK; Rai AN
    Curr Microbiol; 2002 Aug; 45(2):99-104. PubMed ID: 12070686
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers under anaerobic condition.
    Zhou ZF; Yao YH; Wang MX; Zuo XH
    Arch Microbiol; 2017 Oct; 199(8):1091-1101. PubMed ID: 28421249
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Oct; 84(2):170-8. PubMed ID: 12966573
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.
    Vavilin VA; Rytov SV
    Chemosphere; 2015 Sep; 134():417-26. PubMed ID: 25989520
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nitrate Respiration in
    Sánchez-Costa M; Blesa A; Berenguer J
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33158244
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A new family of nitrate/nitrite transporters involved in denitrification.
    Alvarez L; Sanchez-Hevia D; Sánchez M; Berenguer J
    Int Microbiol; 2019 Mar; 22(1):19-28. PubMed ID: 30810929
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Aerobic inhibition of nitrate assimilation in Escherichia coli.
    Kobayashi M; Ishimoto M
    Z Allg Mikrobiol; 1973; 13(5):405-13. PubMed ID: 4588736
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.