These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 6399465)
1. Adhesion in the biologic environment. Baier RE Biomater Med Devices Artif Organs; 1984-1985; 12(3-4):133-59. PubMed ID: 6399465 [TBL] [Abstract][Full Text] [Related]
2. Conditioning surfaces to suit the biomedical environment: recent progress. Baier RE J Biomech Eng; 1982 Nov; 104(4):257-71. PubMed ID: 6759791 [TBL] [Abstract][Full Text] [Related]
3. Surface chemical factors presaging bioadhesive events. Baier RE Ann N Y Acad Sci; 1983; 416():34-57. PubMed ID: 6587811 [No Abstract] [Full Text] [Related]
4. Biomaterials in medical devices. Bruck SD Trans Am Soc Artif Intern Organs; 1972; 18(0):1-9. PubMed ID: 4610962 [No Abstract] [Full Text] [Related]
5. Nonthrombogenic approaches to cardiovascular bioengineering. Li S; Henry JJ Annu Rev Biomed Eng; 2011 Aug; 13():451-75. PubMed ID: 21639778 [TBL] [Abstract][Full Text] [Related]
6. A flexible, noncollapsible and impermeable inflow graft for long-term implantable left ventricular assist system (LVAS). Murabayashi S; Harasaki H; Kambic H; Fujimoto LK; Smith WA; Kiraly R; Nose Y Trans Am Soc Artif Intern Organs; 1984; 30():526-32. PubMed ID: 6533936 [No Abstract] [Full Text] [Related]
7. In vitro and in vivo studies of PEO-grafted blood-contacting cardiovascular prostheses. Park K; Shim HS; Dewanjee MK; Eigler NL J Biomater Sci Polym Ed; 2000; 11(11):1121-34. PubMed ID: 11263803 [TBL] [Abstract][Full Text] [Related]
9. The properties and medical uses of materials. 3:2. The effect of materials on blood. Williams DF Biomed Eng; 1971 May; 6(5):205-8. PubMed ID: 5096867 [No Abstract] [Full Text] [Related]
10. Concept for a new hydrodynamic blood bearing for miniature blood pumps. Kink T; Reul H Artif Organs; 2004 Oct; 28(10):916-20. PubMed ID: 15384998 [TBL] [Abstract][Full Text] [Related]
11. The effect of the physiological environment on the mechanical properties of biomaterials in cardiovascular applications. Bruck SD Biomater Med Devices Artif Organs; 1978; 6(4):341-59. PubMed ID: 749942 [TBL] [Abstract][Full Text] [Related]
12. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. Quirynen M; Bollen CM J Clin Periodontol; 1995 Jan; 22(1):1-14. PubMed ID: 7706534 [TBL] [Abstract][Full Text] [Related]
13. Cardiovascular applications of biomaterials and implants--an overview. Black MM J Med Eng Technol; 1995; 19(5):151-7. PubMed ID: 8676367 [TBL] [Abstract][Full Text] [Related]
14. Surface and bulk characteristics of a polyether urethane for artificial hearts. Boretos JW; Pierce WS; Baier RE; Leroy AF; Donachy HJ J Biomed Mater Res; 1975 May; 9(3):327-40. PubMed ID: 170287 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of thin film surface coatings for biological environments. Ruckenstein E; Gourisankar SV Biomaterials; 1986 Nov; 7(6):403-22. PubMed ID: 3790674 [TBL] [Abstract][Full Text] [Related]
18. The impact of contact angle on the biocompatibility of biomaterials. Menzies KL; Jones L Optom Vis Sci; 2010 Jun; 87(6):387-99. PubMed ID: 20375749 [TBL] [Abstract][Full Text] [Related]
19. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Bacakova L; Filova E; Parizek M; Ruml T; Svorcik V Biotechnol Adv; 2011; 29(6):739-67. PubMed ID: 21821113 [TBL] [Abstract][Full Text] [Related]
20. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation. Lei ZY; Liu T; Li WJ; Shi XH; Fan DL Int J Nanomedicine; 2016; 11():5563-5572. PubMed ID: 27822035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]