These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6400064)

  • 1. Effects of biochemical modulation of drug combinations directed at the ribonucleotide reductase site on leukemia L1210 cell growth in culture.
    Sato A; Carter GL; Bacon PE; Cory JG
    Adv Enzyme Regul; 1983; 21():259-70. PubMed ID: 6400064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of combinations of drugs having different modes of action at the ribonucleotide reductase site on growth of L1210 cells in culture.
    Sato A; Carter GL; Bacon PE; Cory JG
    Cancer Res; 1982 Nov; 42(11):4353-7. PubMed ID: 6751522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The utility of combinations of drugs directed at specific sites of the same target enzyme--ribonucleotide reductase as the model.
    Cory JG; Sato A; Carter GL; Bacon PE; Montgomery JA; Brown NC
    Adv Enzyme Regul; 1985; 23():181-92. PubMed ID: 3907303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ribonucleotide reductase inhibitors on the growth of human colon carcinoma HT-29 cells in culture.
    Matsumoto M; Tihan T; Cory JG
    Cancer Chemother Pharmacol; 1990; 26(5):323-9. PubMed ID: 2208572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of N-hydroxy-N'-aminoguanidine isoquinoline in combination with other inhibitors of ribonucleotide reductase on L1210 cells.
    Weckbecker G; Weckbecker A; Lien EJ; Cory JG
    J Natl Cancer Inst; 1988 Jun; 80(7):491-6. PubMed ID: 2452889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-resistance patterns in hydroxyurea-resistant leukemia L1210 cells.
    Carter GL; Cory JG
    Cancer Res; 1988 Oct; 48(20):5796-9. PubMed ID: 2844392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective resistance of L1210 cell lines to inhibitors directed at the subunits of ribonucleotide reductase.
    Carter GL; Cory JG
    Adv Enzyme Regul; 1989; 29():123-39. PubMed ID: 2699151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the differential mechanisms of inhibition of ribonucleotide reductase by specific inhibitors of the non-heme iron subunit.
    Sato A; Bacon PE; Cory JG
    Adv Enzyme Regul; 1984; 22():231-41. PubMed ID: 6089512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic inhibition of leukemia L1210 cell growth in vitro by combinations of 2-fluoroadenine nucleosides and hydroxyurea or 2,3-dihydro-1H-pyrazole[2,3-a]imidazole.
    Sato A; Montgomery JA; Cory JG
    Cancer Res; 1984 Aug; 44(8):3286-90. PubMed ID: 6611198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of drug resistance to inhibitors directed at the individual subunits of ribonucleotide reductase.
    Carter GL; Thompson DP; Cory JG
    Cancer Commun; 1989; 1(1):13-20. PubMed ID: 2701080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antineoplastic effect of the combination of 2,3-dihydro-1H-pyrazole[2,3a]imidazole plus deoxyadenosine/erythro-9-(2-hydroxyl-3-nonyl)adenine in mice with L1210 leukemia cells.
    Matsumoto M; Weckbecker G; Cory JG
    Cancer Commun; 1990; 2(1):1-6. PubMed ID: 2369548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2'-Deoxy-2'-methylene derivatives of adenosine, guanosine, tubercidin, cytidine and uridine as inhibitors of L1210 cell growth in culture.
    Cory AH; Samano V; Robins MJ; Cory JG
    Biochem Pharmacol; 1994 Jan; 47(2):365-71. PubMed ID: 8304981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of combinations of drugs that inhibit Ehrlich tumor cell ribonucleotide reductase.
    Sato A; Cory JG
    Cancer Res; 1981 May; 41(5):1637-41. PubMed ID: 6783298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leukemia L1210 cell lines resistant to ribonucleotide reductase inhibitors.
    Cory JG; Carter GL
    Cancer Res; 1988 Feb; 48(4):839-43. PubMed ID: 3276399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L1210 cells in vitro.
    Weckbecker G; Cory JG
    Cancer Lett; 1988 Jun; 40(3):257-64. PubMed ID: 3289734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triapine (3-aminopyridine-2-carboxaldehyde- thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity.
    Finch RA; Liu M; Grill SP; Rose WC; Loomis R; Vasquez KM; Cheng Y; Sartorelli AC
    Biochem Pharmacol; 2000 Apr; 59(8):983-91. PubMed ID: 10692563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug action on ribonucleotide reductase.
    Cory JG; Carter GL
    Adv Enzyme Regul; 1985; 24():385-401. PubMed ID: 3915189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribonucleotide reductase as a chemotherapeutic target.
    Cory JG
    Adv Enzyme Regul; 1988; 27():437-55. PubMed ID: 3074632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting the mRNA levels for the non-heme iron and effector-binding subunits of ribonucleotide reductase.
    Carter GL; Cory JG
    Adv Enzyme Regul; 1992; 32():227-40. PubMed ID: 1496919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the mechanisms of inhibition of L1210 cell growth by 3,4-dihydroxybenzohydroxamic acid and 3,4-dihydroxybenzamidoxime.
    Tihan T; Elford HL; Cory JG
    Adv Enzyme Regul; 1991; 31():71-83. PubMed ID: 1877400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.