These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6400480)

  • 21. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.
    Koskinen PE; Beck SR; Orlygsson J; Puhakka JA
    Biotechnol Bioeng; 2008 Nov; 101(4):679-90. PubMed ID: 18500766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Metabolic characteristics of thermophilic microorganisms].
    Pozmogova IN
    Mikrobiologiia; 1975; 44(3):492-7. PubMed ID: 808692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues.
    Kim HS; Damo SM; Lee SY; Wemmer D; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11428-39. PubMed ID: 16114879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities.
    Zhang YH
    Biotechnol Bioeng; 2010 Mar; 105(4):663-77. PubMed ID: 19998281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes.
    Cheong DY; Hansen CL
    Bioresour Technol; 2007 Aug; 98(11):2229-39. PubMed ID: 17107783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation.
    Ugwuanyi JO
    Bioresour Technol; 2008 May; 99(8):3279-90. PubMed ID: 17664065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase.
    Kallwass HK; Surewicz WK; Parris W; Macfarlane EL; Luyten MA; Kay CM; Gold M; Jones JB
    Protein Eng; 1992 Dec; 5(8):769-74. PubMed ID: 1287656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Esterases from Bacillus subtilis and B. stearothermophilus share high sequence homology but differ substantially in their properties.
    Henke E; Bornscheuer UT
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):320-6. PubMed ID: 12436314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Purification and properties of thermostable catalase in engineered E. coli].
    Wang F; Wang Z; Shao W; Liu J; Xu C; Zhuge J
    Wei Sheng Wu Xue Bao; 2002 Jun; 42(3):348-53. PubMed ID: 12557378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production and characterization of thermostable alpha-amylase by thermophilic Geobacillus stearothermophilus.
    Al-Qodah Z
    Biotechnol J; 2006; 1(7-8):850-7. PubMed ID: 16927263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of Sulfolobus solfataricus alpha-glucosidase in Lactococcus lactis.
    Giuliano M; Schiraldi C; Marotta MR; Hugenholtz J; De Rosa M
    Appl Microbiol Biotechnol; 2004 Jun; 64(6):829-32. PubMed ID: 15168096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced ethanol fermentation of brewery wastewater using the genetically modified strain E. coli KO11.
    Rao K; Chaudhari V; Varanasi S; Kim DS
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):50-60. PubMed ID: 17043818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [N-acetylglutamate-5-phosphotransferase of the thermophilic bacterium Bacillus stearothermophilus: nucleotide sequence of the gene and enzyme characterization].
    Sakanian VA; Legreĭn Kh; Charlier D; Kochikian AV
    Genetika; 1993 Apr; 29(4):556-70. PubMed ID: 8394836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production.
    Taylor MP; Eley KL; Martin S; Tuffin MI; Burton SG; Cowan DA
    Trends Biotechnol; 2009 Jul; 27(7):398-405. PubMed ID: 19481826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of thermotolerant yeasts in controlled simultaneous saccharifications and fermentations of cellulose to ethanol.
    Spindler DD; Wyman CE; Grohmann K
    Biotechnol Bioeng; 1989 Jun; 34(2):189-95. PubMed ID: 18588092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
    Skory CD
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):22-7. PubMed ID: 12545382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus.
    Shimozawa Y; Himiyama T; Nakamura T; Nishiya Y
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 34850194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering surface loops of proteins--a preferred strategy for obtaining new enzyme function.
    el Hawrani AS; Moreton KM; Sessions RB; Clarke AR; Holbrook JJ
    Trends Biotechnol; 1994 May; 12(5):207-11. PubMed ID: 7764905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of alcohol by Bacillus stearothermophilus.
    Atkinson A; Ellwood DC; Evans CG; Yeo RG
    Biotechnol Bioeng; 1975 Sep; 17(9):1375-7. PubMed ID: 1182284
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.