BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6400925)

  • 1. Monte Carlo computer simulation of the aqueous hydration of the glycine zwitterion at 25 degree C.
    Mezei M; Mehrotra PK; Beveridge DL
    J Biomol Struct Dyn; 1984 Aug; 2(1):1-27. PubMed ID: 6400925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of glycine zwitterion in aqueous solution.
    Campo MG
    J Chem Phys; 2006 Sep; 125(11):114511. PubMed ID: 16999494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous hydration of nucleic acid constituents: Monte Carlo computer simulation studies.
    Beveridge DL; Maye PV; Jayaram B; Ravishanker G; Mezei M
    J Biomol Struct Dyn; 1984 Oct; 2(2):261-70. PubMed ID: 6401130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Monte Carlo simulation study of the aqueous hydration of r(GpC)2: comparison with crystallographic ordered water sites.
    Subramanian PS; Pitchumani S; Beveridge DL; Berman HM
    Biopolymers; 1990; 29(4-5):771-83. PubMed ID: 2383642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of multipole contributions to the structure of water around ions in solution using the soft sticky dipole-quadrupole-octupole (SSDQO) model of water.
    Tan ML; Lucan L; Ichiye T
    J Chem Phys; 2006 May; 124(17):174505. PubMed ID: 16689581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine in aqueous solution: solvation shells, interfacial water, and vibrational spectroscopy from ab initio molecular dynamics.
    Sun J; Bousquet D; Forbert H; Marx D
    J Chem Phys; 2010 Sep; 133(11):114508. PubMed ID: 20866146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous solutions of divalent chlorides: ions hydration shell and water structure.
    Bruni F; Imberti S; Mancinelli R; Ricci MA
    J Chem Phys; 2012 Feb; 136(6):064520. PubMed ID: 22360208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical study of the aqueous hydration of canonical B d(CGCGAATTCGCG): Monte Carlo simulation and comparison with crystallographic ordered water sites.
    Subramanian PS; Beveridge DL
    J Biomol Struct Dyn; 1989 Jun; 6(6):1093-122. PubMed ID: 2684218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building the first hydration shell of deprotonated glycine by the MCMM and ab initio methods.
    Yao Y; Chen D; Zhang S; Li Y; Tu P; Liu B; Dong M
    J Phys Chem B; 2011 May; 115(19):6213-21. PubMed ID: 21510688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio molecular dynamics study of glycine intramolecular proton transfer in water.
    Leung K; Rempe SB
    J Chem Phys; 2005 May; 122(18):184506. PubMed ID: 15918728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force field for molecular dynamics studies of glycine/water mixtures in crystal/solution environments.
    Gnanasambandam S; Hu Z; Jiang J; Rajagopalan R
    J Phys Chem B; 2009 Jan; 113(3):752-8. PubMed ID: 19115812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature of the stacking of nucleic acid bases in water: a Monte Carlo simulation.
    Danilov VI; Tolokh IS
    J Biomol Struct Dyn; 1984 Aug; 2(1):119-30. PubMed ID: 6400926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.
    Mo Y; Gao J
    J Phys Chem B; 2006 Feb; 110(7):2976-80. PubMed ID: 16494296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydration structure of 18-crown-6/K+ complex as studied by Monte Carlo simulation using ab initio fitted potential.
    Krongsuk S; Kerdcharoen T; Hannongbua S
    J Mol Graph Model; 2006 Sep; 25(1):55-60. PubMed ID: 16343960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo studies on water in the dCpG/proflavin crystal hydrate.
    Mezei M; Beveridge DL; Berman HM; Goodfellow JM; Finney JL; Neidle S
    J Biomol Struct Dyn; 1983 Oct; 1(1):287-97. PubMed ID: 6400875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T; Kovalenko A
    J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water.
    He Y; Hower J; Chen S; Bernards MT; Chang Y; Jiang S
    Langmuir; 2008 Sep; 24(18):10358-64. PubMed ID: 18690732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of chain flexibility on polymer conformation in dilute solution studied by lattice monte carlo simulation.
    Li Y; Huang Q; Shi T; An L
    J Phys Chem B; 2006 Nov; 110(46):23502-6. PubMed ID: 17107205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of peptide carboxylate hydration.
    Liang T; Walsh TR
    Phys Chem Chem Phys; 2006 Oct; 8(38):4410-9. PubMed ID: 17001408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions.
    Athawale MV; Sarupria S; Garde S
    J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.