These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6401080)

  • 1. Acoustic input-admittance of the alligator-lizard ear: nonlinear features.
    Rosowski JJ; Peake WT; Lynch TJ
    Hear Res; 1984 Dec; 16(3):205-23. PubMed ID: 6401080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements.
    Teoh SW; Flandermeyer DT; Rosowski JJ
    Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard.
    Rosowski JJ; Peake WT; White JR
    Hear Res; 1984 Feb; 13(2):141-58. PubMed ID: 6715262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage.
    Rosowski JJ; Peake WT; Lynch TJ; Leong R; Weiss TF
    Hear Res; 1985; 20(2):139-55. PubMed ID: 3878838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Tympanic Membrane Electrodes on Sound Transmission From the Ear Canal to the Middle and Inner Ears.
    Hannon C; Lewis JD
    Ear Hear; 2024 Nov-Dec 01; 45(6):1396-1405. PubMed ID: 38764148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chinchilla middle-ear admittance and sound power: high-frequency estimates and effects of inner-ear modifications.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2012 Oct; 132(4):2437-54. PubMed ID: 23039439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the middle ear reflex on sound transmission to the inner ear of rat.
    Pilz PK; Ostwald J; Kreiter A; Schnitzler HU
    Hear Res; 1997 Mar; 105(1-2):171-82. PubMed ID: 9083814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic input impedance of the stapes and cochlea in human temporal bones.
    Merchant SN; Ravicz ME; Rosowski JJ
    Hear Res; 1996 Aug; 97(1-2):30-45. PubMed ID: 8844184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ear-canal standing waves on measurements of distortion-product otoacoustic emissions.
    Whitehead ML; Stagner BB; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1995 Dec; 98(6):3200-14. PubMed ID: 8550945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz.
    Lynch TJ; Peake WT; Rosowski JJ
    J Acoust Soc Am; 1994 Oct; 96(4):2184-209. PubMed ID: 7963032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard's cochlea.
    Eatock RA; Saeki M; Hutzler MJ
    J Neurosci; 1993 Apr; 13(4):1767-83. PubMed ID: 8385208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Middle-ear pressure gain and cochlear partition differential pressure in chinchilla.
    Ravicz ME; Slama MC; Rosowski JJ
    Hear Res; 2010 May; 263(1-2):16-25. PubMed ID: 19945521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic input impedance of the avian inner ear measured in ostrich (Struthio camelus).
    Muyshondt PG; Aerts P; Dirckx JJ
    Hear Res; 2016 Sep; 339():175-83. PubMed ID: 27473506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of discharge rate on sound pressure level in cochlear nerve fibers of the alligator lizard: implications for cochlear mechanisms.
    Eatock RA; Weiss TF; Otto KL
    J Neurophysiol; 1991 Jun; 65(6):1580-97. PubMed ID: 1875264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita).
    Huang GT; Rosowski JJ; Ravicz ME; Peake WT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Oct; 188(9):663-81. PubMed ID: 12397438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity.
    Peake WT; Ling A
    J Acoust Soc Am; 1980 May; 67(5):1736-45. PubMed ID: 7372928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tests of some common assumptions of ear-canal acoustics in cats.
    Huang GT; Rosowski JJ; Puria S; Peake WT
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1147-61. PubMed ID: 11008816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears.
    Manley GA
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):1-24. PubMed ID: 27539715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.