These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6401089)

  • 21. Basal turn cochlear lesions following exposure to low-frequency noise.
    Fried MP; Dudek SE; Bohne BA
    Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol; 1976; 82(3 Pt 1):285-98. PubMed ID: 960396
    [No Abstract]   [Full Text] [Related]  

  • 22. Comparison of hearing thresholds and morphological changes in the chinchilla after exposure to 4 kHz tones.
    Ades HW; Trahiotis C; Kokko-Cunningham A; Averbuch A
    Acta Otolaryngol; 1974; 78(3-4):192-206. PubMed ID: 4432743
    [No Abstract]   [Full Text] [Related]  

  • 23. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning.
    Canlon B; Fransson A
    Hear Res; 1995 Apr; 84(1-2):112-24. PubMed ID: 7642444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regenerated nerve fibers in the noise-damaged chinchilla cochlea are not efferent.
    Strominger RN; Bohne BA; Harding GW
    Hear Res; 1995 Dec; 92(1-2):52-62. PubMed ID: 8647746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distortion-product and click-evoked otoacoustic emissions of normally-hearing adults.
    Smurzynski J; Kim DO
    Hear Res; 1992 Mar; 58(2):227-40. PubMed ID: 1568944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the relation between hearing sensitivity and otoacoustic emissions.
    McFadden D; Mishra R
    Hear Res; 1993 Dec; 71(1-2):208-13. PubMed ID: 8113138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous otoacoustic emissions measured using an open ear-canal recording technique.
    Boul A; Lineton B
    Hear Res; 2010 Oct; 269(1-2):112-21. PubMed ID: 20600736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relation of focal hair-cell lesions to noise-exposure parameters from a 4- or a 0.5-kHz octave band of noise.
    Harding GW; Bohne BA
    Hear Res; 2009 Aug; 254(1-2):54-63. PubMed ID: 19393307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions among spontaneous otoacoustic emissions. I. Distortion products and linked emissions.
    Burns EM; Strickland EA; Tubis A; Jones K
    Hear Res; 1984 Dec; 16(3):271-8. PubMed ID: 6401086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency Shifts in a Local Oscillator Model for the Generation of Spontaneous Otoacoustic Emissions by the Lizard Ear.
    Wit HP; Bell A
    Audiol Neurootol; 2023; 28(3):183-193. PubMed ID: 36626887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Otoacoustic emissions and medial olivocochlear suppression during auditory recovery from acoustic trauma in humans.
    Veuillet E; Martin V; Suc B; Vesson JF; Morgon A; Collet L
    Acta Otolaryngol; 2001 Jan; 121(2):278-83. PubMed ID: 11349796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Our present experience on spontaneous cochlear emissions.
    Fritze W; Köhler W
    Scand Audiol Suppl; 1986; 25():129-37. PubMed ID: 3472317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Height changes in the organ of Corti after noise exposure.
    Harding GW; Baggot PJ; Bohne BA
    Hear Res; 1992 Nov; 63(1-2):26-36. PubMed ID: 1464572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cochlear de-efferentation and impulse noise-induced acoustic trauma in the chinchilla.
    Zheng XY; McFadden SL; Ding DL; Henderson D
    Hear Res; 2000 Jun; 144(1-2):187-95. PubMed ID: 10831877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Spontaneous otoacoustic emissions and efferent control of cochlea].
    Xu J; Liu C; Guo L; Lian N; Liu B
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Dec; 36(6):436-40. PubMed ID: 12761959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cubic distortion product otoacoustic emissions from the normal and noise-damaged chinchilla cochlea.
    Hamernik RP; Ahroon WA; Lei SF
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):1003-12. PubMed ID: 8759953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aspects of spontaneous otoacoustic emissions in healthy newborns.
    Kok MR; van Zanten GA; Brocaar MP
    Hear Res; 1993 Sep; 69(1-2):115-23. PubMed ID: 8226331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of high level sound on hearing sensitivity, cochlear sensorineuroepithelium and vasculature of the chinchilla.
    Lipscomb DM; Axelsson A; Vertes D; Roettger R; Carrol J
    Acta Otolaryngol; 1977; 84(1-2):44-56. PubMed ID: 899752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vulnerability to acoustic trauma in the normal hearing ear with contralateral hearing loss.
    Lim HW; Lee JW; Chung JW
    Ann Otol Rhinol Laryngol; 2014 Apr; 123(4):286-92. PubMed ID: 24671484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.