These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6401114)

  • 41. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs.
    Eriani G; Gangloff J
    J Mol Biol; 1999 Aug; 291(4):761-73. PubMed ID: 10452887
    [TBL] [Abstract][Full Text] [Related]  

  • 42. tRNA leucine identity and recognition sets.
    Tocchini-Valentini G; Saks ME; Abelson J
    J Mol Biol; 2000 May; 298(5):779-93. PubMed ID: 10801348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The presence of a D-stem but not a T-stem is essential for triggering aminoacylation upon anticodon binding in yeast methionine tRNA.
    Senger B; Aphasizhev R; Walter P; Fasiolo F
    J Mol Biol; 1995 May; 249(1):45-58. PubMed ID: 7776375
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A UGU sequence in the anticodon loop is a minimum requirement for recognition by Escherichia coli tRNA-guanine transglycosylase.
    Nakanishi S; Ueda T; Hori H; Yamazaki N; Okada N; Watanabe K
    J Biol Chem; 1994 Dec; 269(51):32221-5. PubMed ID: 7528209
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On loop folding in nucleic acid hairpin-type structures.
    Haasnoot CA; Hilbers CW; van der Marel GA; van Boom JH; Singh UC; Pattabiraman N; Kollman PA
    J Biomol Struct Dyn; 1986 Apr; 3(5):843-57. PubMed ID: 2482747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two transfer RNA sequences abut the large ribosomal RNA gene in Tetrahymena mitochondrial DNA: tRNA(leu) (anticodon UAA) and tRNA(met) (anticodon CAU).
    Suyama Y; Jenney F; Okawa N
    Curr Genet; 1987; 11(4):327-30. PubMed ID: 3129201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases.
    Romby P; Moras D; Dumas P; Ebel JP; Giegé R
    J Mol Biol; 1987 May; 195(1):193-204. PubMed ID: 3309332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structlre of transfer RNA molecules containing the long variable loop.
    Brennan T; Sundaralingam M
    Nucleic Acids Res; 1976 Nov; 3(11):3235-50. PubMed ID: 794835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformation of charged and uncharged tRNA.
    Wong YP; Reid BR; Kearns DR
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2193-5. PubMed ID: 4599618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stacking of Crick Wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and the relation to codon-anticodon Wobble interaction.
    Mizuno H; Sundaralingam M
    Nucleic Acids Res; 1978 Nov; 5(11):4451-61. PubMed ID: 724522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Location of accessible bases in Escherichia coli formylmethionine transfer RNA as determined by chemical modification.
    Schulman LH; Pelka H
    Biochemistry; 1976 Dec; 15(26):5769-75. PubMed ID: 827308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pleiotrophic effects of point mutations in yeast tRNA(Asp) on the base modification pattern.
    Edqvist J; Stråby KB; Grosjean H
    Nucleic Acids Res; 1993 Feb; 21(3):413-7. PubMed ID: 8441654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The uridine in "U-turn": contributions to tRNA-ribosomal binding.
    Ashraf SS; Ansari G; Guenther R; Sochacka E; Malkiewicz A; Agris PF
    RNA; 1999 Apr; 5(4):503-11. PubMed ID: 10199567
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA.
    Quigley GJ; Teeter MM; Rich A
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):64-8. PubMed ID: 343112
    [TBL] [Abstract][Full Text] [Related]  

  • 55. tRNA structure and evolution and standardization to the three nucleotide genetic code.
    Pak D; Root-Bernstein R; Burton ZF
    Transcription; 2017 Aug; 8(4):205-219. PubMed ID: 28632998
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The three conformations of the anticodon loop of yeast tRNA(Phe).
    Striker G; Labuda D; Vega-Martin MC
    J Biomol Struct Dyn; 1989 Oct; 7(2):235-55. PubMed ID: 2690867
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Backbone-base interactions critical to quantum stabilization of transfer RNA anticodon structure.
    Witts RN; Hopson EC; Koballa DE; Van Boening TA; Hopkins NH; Patterson EV; Nagan MC
    J Phys Chem B; 2013 Jun; 117(25):7489-97. PubMed ID: 23742318
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogen bonding in yeast phenylalanine transfer RNA.
    Quigley GJ; Wang AH; Seeman NC; Suddath FL; Rich A; Sussman JL; Kim SH
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4866-70. PubMed ID: 1108007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The peculiar architectural framework of tRNASec is fully recognized by yeast AspRS.
    Rudinger-Thirion J; Giegé R
    RNA; 1999 Apr; 5(4):495-502. PubMed ID: 10199566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of genomic tRNA sets from Bacteria, Archaea, and Eukarya points to anticodon-codon hydrogen bonds as a major determinant of tRNA compositional variations.
    Targanski I; Cherkasova V
    RNA; 2008 Jun; 14(6):1095-109. PubMed ID: 18441051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.