These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6401278)

  • 1. Nutritional regulation of degradation of aspartate transcarbamylase and of bulk protein in exponentially growing Bacillus subtilis cells.
    Bond RW; Field AS; Switzer RL
    J Bacteriol; 1983 Jan; 153(1):253-8. PubMed ID: 6401278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunochemical studies of the inactivation of aspartate transcarbamylase by stationary phase Bacillus subtilis cells. Evidence for selective, energy-dependent degradation.
    Maurizi MR; Brabson JS; Switzer RL
    J Biol Chem; 1978 Aug; 253(16):5585-93. PubMed ID: 97299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for substrate stabilization in regulation of the degradation of Bacillus subtilis aspartate transcarbamylase in vivo.
    Hu P; Switzer RL
    Arch Biochem Biophys; 1995 Jan; 316(1):260-6. PubMed ID: 7840626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspartate transcarbamylase synthesis ceases prior to inactivation of the enzyme in Bacillus subtilis.
    Maurizi MR; Switzer RL
    J Bacteriol; 1978 Sep; 135(3):943-51. PubMed ID: 99440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of Bacillus subtilis aspartate transcarbamylase.
    Brabson JS; Switzer RL
    J Biol Chem; 1975 Nov; 250(22):8664-9. PubMed ID: 241753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of aspartate transcarbamylase in Bacillus subtilis is deficient in rel mutants but is not mediated by guanosine polyphosphates.
    Bond RW; Switzer RL
    J Bacteriol; 1984 May; 158(2):746-8. PubMed ID: 6427186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the stringent response in regulation of protein degradation in Bacillus subtilis.
    Switzer RL; Bond RW; Ruppen ME; Rosenzweig S
    Curr Top Cell Regul; 1985; 27():373-86. PubMed ID: 3937667
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzyme changes during Bacillus subtilis sporulation caused by deprivation of guanine nucleotides.
    Vasantha N; Freese E
    J Bacteriol; 1980 Dec; 144(3):1119-25. PubMed ID: 6777366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of various carbon and nitrogen sources in the regulation of enzymes of pyrimidine biosynthesis in Mycobacterium smegmatis TMC 1546.
    Masood R; Venkitasubramanian TA
    Ann Inst Pasteur Microbiol; 1987; 138(5):501-7. PubMed ID: 3440089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinate and non-coordinate accululation of aspartate transcarbamylase and dihydroorotase in synchronous Chlorella cells growing on different nitrogen sources.
    Dunn JH; Jervis HH; Wilkins JH; Meredith MJ; Smith KT; Flora JB; Schmidt RR
    Biochim Biophys Acta; 1977 Dec; 485(2):301-13. PubMed ID: 21696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspartate transcarbamylase from Bacillus subtilis.
    Brabson JS; Maurizi MR; Switzer RL
    Methods Enzymol; 1985; 113():627-35. PubMed ID: 3937019
    [No Abstract]   [Full Text] [Related]  

  • 12. The isolation and characterization of the aspartate transcarbamylase domain of the multifunctional protein, CAD.
    Grayson DR; Evans DR
    J Biol Chem; 1983 Apr; 258(7):4123-9. PubMed ID: 6300078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of aspartic transcarbamylase in sporulating Bacillus subtilis: demonstration of a requirement for metabolic energy.
    Waindle LM; Switzer RL
    J Bacteriol; 1973 May; 114(2):517-27. PubMed ID: 4196242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sodium effect of Bacillus subtilis growth on aspartate.
    Whiteman P; Marks C; Freese E
    J Gen Microbiol; 1980 Aug; 119(2):493-504. PubMed ID: 6785382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and inactivation of carbamyl phosphate synthetase isozymes of Bacillus subtilis during growth and sporulation.
    Paulus TJ; Switzer RL
    J Bacteriol; 1979 Dec; 140(3):769-73. PubMed ID: 230177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of sources of carbon, nitrogen, and phosphorus on the synthesis of proteases from Bacillus subtilis cultures].
    Kaluniants KA; Strel'nikova LI; Shteĭn IV
    Prikl Biokhim Mikrobiol; 1979; 15(1):57-62. PubMed ID: 95825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of tetraiodofluorescein with a modified form of aspartate transcarbamylase.
    Kantrowitz ER; Jacobsberg LB; Landfear SM; Lipscomb WN
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):111-4. PubMed ID: 319454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of biosynthesis of bacilysin by Bacillus subtilis.
    Ozcengiz G; Alaeddinoglu NG; Demain AL
    J Ind Microbiol; 1990 Oct; 6(2):91-100. PubMed ID: 1367485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The primary structure of the aspartate transcarbamylase region of the URA2 gene product in Saccharomyces cerevisiae. Features involved in activity and nuclear localization.
    Nagy M; Le Gouar M; Potier S; Souciet JL; Hervé G
    J Biol Chem; 1989 May; 264(14):8366-74. PubMed ID: 2498313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and structure of the Bacillus subtilis aspartate transcarbamylase gene (pyrB).
    Lerner CG; Switzer RL
    J Biol Chem; 1986 Aug; 261(24):11156-65. PubMed ID: 3015959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.