These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 640146)

  • 1. Control in vitro of tocopherol oxidase by light in extracts from leaves of Xanthium strumarium L [proceedings].
    Gaunt JK; Plumpton ES
    Biochem Soc Trans; 1978; 6(1):143-5. PubMed ID: 640146
    [No Abstract]   [Full Text] [Related]  

  • 2. Photoperiodic control in vivo and in vitro of tocopherol oxidase in Xanthium strumarium L [proceedings].
    Gaunt JK; Plumpton ES
    Biochem Soc Trans; 1980 Apr; 8(2):187-8. PubMed ID: 7371962
    [No Abstract]   [Full Text] [Related]  

  • 3. Control in vitro of tocopherol oxidase by light and by auxins, kinetin, gibberellic acid, abscisic acid and ethylene [proceedings].
    Gaunt JK; Matthews GM; Plumpton ES
    Biochem Soc Trans; 1980 Apr; 8(2):186-7. PubMed ID: 6445302
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of photoperiod on endogenous gamma-tocopherol and plastochromanol in leaves of Xanthium strumarium L. (cocklebur).
    Battle RW; Gaunt JK; Laidman DL
    Biochem Soc Trans; 1976; 4(3):484-6. PubMed ID: 1001705
    [No Abstract]   [Full Text] [Related]  

  • 5. The relationship between floral induction and gamma-tocopherol concentrations in leaves of Xanthium strumarium L.
    Battle RW; Laidman DL; Gaunt JK
    Biochem Soc Trans; 1977; 5(1):322-4. PubMed ID: 892200
    [No Abstract]   [Full Text] [Related]  

  • 6. The properties and distribution of alpha-tocopherol oxidase in plants.
    Plumpton SE; Gaunt JK
    Biochem Soc Trans; 1976; 4(3):486-7. PubMed ID: 1001706
    [No Abstract]   [Full Text] [Related]  

  • 7. The influence of photoperiod on incorporation of precursors into tocopherols and plastoquinone in Xanthium strumarium L.
    Torres JM; Laidman DL; Gaunt JK
    New Phytol; 1989 Mar; 111(3):397-401. PubMed ID: 33874014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatiles Profiling, Allelopathic Activity, and Antioxidant Potentiality of
    El-Gawad AA; Elshamy A; El Gendy AE; Gaara A; Assaeed A
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30736389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox function in plasma membranes.
    Löw H; Crane FL
    Biochim Biophys Acta; 1978 Jul; 515(2):141-61. PubMed ID: 356884
    [No Abstract]   [Full Text] [Related]  

  • 10. Morphophysiological responses and tolerance mechanisms of Xanthium strumarium to manganese stress.
    Pan G; Liu W; Zhang H; Liu P
    Ecotoxicol Environ Saf; 2018 Dec; 165():654-661. PubMed ID: 30245299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-arthritic activity of Xanthium strumarium L. extract on complete Freund׳s adjuvant induced arthritis in rats.
    Lin B; Zhao Y; Han P; Yue W; Ma XQ; Rahman K; Zheng CJ; Qin LP; Han T
    J Ethnopharmacol; 2014 Aug; 155(1):248-55. PubMed ID: 24862493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthium strumarium extract inhibits mammalian cell proliferation through mitotic spindle disruption mediated by xanthatin.
    Sánchez-Lamar A; Piloto-Ferrer J; Fiore M; Stano P; Cozzi R; Tofani D; Cundari E; Francisco M; Romero A; González ML; Degrassi F
    J Ethnopharmacol; 2016 Dec; 194():781-788. PubMed ID: 27840259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli.
    Sharifi-Rad J; Soufi L; Ayatollahi SA; Iriti M; Sharifi-Rad M; Varoni EM; Shahri F; Esposito S; Kuhestani K; Sharifi-Rad M
    Cell Mol Biol (Noisy-le-grand); 2016 Sep; 62(9):69-74. PubMed ID: 27650979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xanthatin and xanthinosin from the burs of Xanthium strumarium L. as potential anticancer agents.
    Ramírez-Erosa I; Huang Y; Hickie RA; Sutherland RG; Barl B
    Can J Physiol Pharmacol; 2007 Nov; 85(11):1160-72. PubMed ID: 18066118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of microtubules with active principles of Xanthium strumarium.
    Menon GS; Kuchroo K; Dasgupta D
    Physiol Chem Phys Med NMR; 2001; 33(2):153-62. PubMed ID: 12002689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two cytotoxic sesquiterpene lactones from the leaves of Xanthium strumarium and their in vitro inhibitory activity on farnesyltransferase.
    Kim YS; Kim JS; Park SH; Choi SU; Lee CO; Kim SK; Kim YK; Kim SH; Ryu SY
    Planta Med; 2003 Apr; 69(4):375-7. PubMed ID: 12709909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidoreductases in plant plasma membranes.
    Lüthje S; Döring O; Heuer S; Lüthen H; Böttger M
    Biochim Biophys Acta; 1997 Mar; 1331(1):81-102. PubMed ID: 9325436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of melanogenesis by Xanthium strumarium L.
    Li H; Min YS; Park KC; Kim DS
    Biosci Biotechnol Biochem; 2012; 76(4):767-71. PubMed ID: 22484949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness.
    Wang X; Lewis JD; Tissue DT; Seemann JR; Griffin KL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2479-84. PubMed ID: 11226264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a light-independent protochlorophyllide reductase in green barley leaves.
    Adamson H
    Prog Clin Biol Res; 1982; 102 Pt B():33-41. PubMed ID: 7163175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.