BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 6401800)

  • 1. Evidence for the localization of hydrogen peroxide-stimulated cyclooxygenase activity in rat brain mitochondria: a possible coupling with monoamine oxidase.
    Seregi A; Serfözö P; Mergl Z
    J Neurochem; 1983 Feb; 40(2):407-13. PubMed ID: 6401800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanism of the involvement of monoamine oxidase in catecholamine-stimulated prostaglandin biosynthesis in particulate fraction of rat brain homogenates: role of hydrogen peroxide.
    Seregi A; Serfözö P; Mergl Z; Schaefer A
    J Neurochem; 1982 Jan; 38(1):20-7. PubMed ID: 7108528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cyclooxygenase activity and prostaglandin profiles during monoamine metabolism in rat brain homogenates.
    Seregi A; Hertting G
    Prostaglandins Leukot Med; 1984 Apr; 14(1):113-21. PubMed ID: 6427788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA.
    Hauptmann N; Grimsby J; Shih JC; Cadenas E
    Arch Biochem Biophys; 1996 Nov; 335(2):295-304. PubMed ID: 8914926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide production by monoamine oxidase in isolated rat-brain mitochondria: its effect on glutathione levels and Ca2+ efflux.
    Sandri G; Panfili E; Ernster L
    Biochim Biophys Acta; 1990 Sep; 1035(3):300-5. PubMed ID: 2207125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen peroxide enhances the activity of monoamine oxidase type-B but not of type-A: a pilot study.
    Konradi C; Riederer P; Youdim MB
    J Neural Transm Suppl; 1986; 22():61-73. PubMed ID: 3097261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of lipid peroxidation in the possible involvement of membrane-bound monoamine oxidases in gamma-aminobutyric acid and glucosamine deamination in rat brain. Focus on chemical pathogenesis of experimental audiogenic epilepsy.
    Medvedev AE; Rajgorodskaya DI; Gorkin VZ; Fedotova IB; Semiokhina AF
    Mol Chem Neuropathol; 1992; 16(1-2):187-201. PubMed ID: 1520403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of the neurotransmitter glycine from the anticonvulsant milacemide is mediated by brain monoamine oxidase B.
    Janssens de Varebeke P; Cavalier R; David-Remacle M; Youdim MB
    J Neurochem; 1988 Apr; 50(4):1011-6. PubMed ID: 3346666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen peroxide production by monoamine oxidase during ischemia-reperfusion in the rat brain.
    Simonson SG; Zhang J; Canada AT; Su YF; Benveniste H; Piantadosi CA
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):125-34. PubMed ID: 8417001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of monoamine oxidase by high molecular weight fractions of human plasma.
    Wahlund LO; Sääf J; Ross SB; Wetterberg L
    Acta Physiol Scand; 1984 Mar; 120(3):337-41. PubMed ID: 6741571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevention of H2O2 generation by monoamine oxidase protects against CNS O2 toxicity.
    Zhang J; Piantadosi CA
    J Appl Physiol (1985); 1991 Sep; 71(3):1057-61. PubMed ID: 1757301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [3H]tryptamine binding sites are not identical to monoamine oxidase in rat brain.
    Perry DC; Grimm LJ; Kettler KG; Kellar KJ
    J Neurochem; 1988 Nov; 51(5):1535-40. PubMed ID: 3139835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Properties of intestinal monoamine oxidase in the rat].
    Verevkina IV; Asnina VV; Gorkin VZ
    Vopr Med Khim; 1982; 28(2):88-93. PubMed ID: 7080482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of primaquine by liver homogenate fractions. Evidence for monoamine oxidase and cytochrome P450 involvement in the oxidative deamination of primaquine to carboxyprimaquine.
    Constantino L; Paixão P; Moreira R; Portela MJ; Do Rosario VE; Iley J
    Exp Toxicol Pathol; 1999 Jul; 51(4-5):299-303. PubMed ID: 10445386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in monoamine oxidase activity in rat brain crude mitochondrial fractions prepared by rate zonal centrifugation.
    Youdim MB
    J Neural Transm; 1976; 38(1):. PubMed ID: 1262860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Possible mechanism of selective inhibition of rat liver mitochondrial monoamine oxidase by chlorgiline and deprenyl].
    Severina IS
    Biokhimiia; 1979 Feb; 44(2):195-207. PubMed ID: 435561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of a coupled mechanism between monoamine oxidase and peroxidase in the metabolism of tyramine by rat intestinal mitochondria.
    Valoti M; Morón JA; Benocci A; Sgaragli G; Unzeta M
    Biochem Pharmacol; 1998 Jan; 55(1):37-43. PubMed ID: 9413928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates.
    Maker HS; Weiss C; Silides DJ; Cohen G
    J Neurochem; 1981 Feb; 36(2):589-93. PubMed ID: 7463078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for increased activity of mouse brain fatty acid cyclooxygenase following drug-induced convulsions.
    Lysz TW; Centra M; Markey K; Keeting PE
    Brain Res; 1987 Apr; 408(1-2):6-12. PubMed ID: 3109689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow.
    Cohen G; Farooqui R; Kesler N
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4890-4. PubMed ID: 9144160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.