These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 640193)

  • 1. The removal of membrane components from human erythrocytes by glycocholate [proceedings].
    Billington D; Coleman R
    Biochem Soc Trans; 1978; 6(1):286-8. PubMed ID: 640193
    [No Abstract]   [Full Text] [Related]  

  • 2. Membrane composition affects characteristics of glycocholate-induced lysis of erythrocytes [proceedings].
    Coleman R; Billington D
    Biochem Soc Trans; 1979 Oct; 7(5):948. PubMed ID: 510753
    [No Abstract]   [Full Text] [Related]  

  • 3. Glycocholate can remove lipid and protein components from the outer leaflet of the plasma membrane without causing cell lysis.
    Coleman R; Holdsworth G; Vyvoda OS
    Biochem Soc Trans; 1976; 4(2):244. PubMed ID: 1001659
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of bile salts of human erythrocytes. Plasma membrane vesiculation, phospholipid solubilization and their possible relationships to bile secretion.
    Billington D; Coleman R
    Biochim Biophys Acta; 1978 May; 509(1):33-47. PubMed ID: 647007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the organization of erythrocyte membrane phospholipids by cytoplasmic ATP. The susceptibility of isoionic human erythrocytes ghosts to attack by detergents and phospholipase C.
    Shukla SD; Billah MM; Coleman R; Finean JB; Michell RH
    Biochim Biophys Acta; 1978 May; 509(1):48-57. PubMed ID: 647008
    [No Abstract]   [Full Text] [Related]  

  • 6. Topographical dissection of sheep erythrocyte membrane phospholipids by taurocholate and glycocholate.
    Billington D; Coleman R; Lusak YA
    Biochim Biophys Acta; 1977 May; 466(3):526-30. PubMed ID: 857891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective removal of lipids from the outer membrane layer of human erythrocytes without hemolysis. Consequences for bilayer stability and cell shape.
    Haest CW; Plasa G; Deuticke B
    Biochim Biophys Acta; 1981 Dec; 649(3):701-8. PubMed ID: 7317423
    [No Abstract]   [Full Text] [Related]  

  • 8. The bilayer stability of inner monolayer lipids from the human erythrocyte.
    Hope MJ; Cullis PR
    FEBS Lett; 1979 Nov; 107(2):323-6. PubMed ID: 510542
    [No Abstract]   [Full Text] [Related]  

  • 9. The physiological significance of oxidative perturbations in erythrocyte membrane lipids and proteins.
    Hochstein P; Jain SK; Rice-Evans C
    Prog Clin Biol Res; 1981; 55():449-65. PubMed ID: 7291197
    [No Abstract]   [Full Text] [Related]  

  • 10. The lectin-binding sites of the erythrocyte membrane components of horse, swine and sheep. Characterization by their molecular weights.
    Gürtler LG; Yeboa DA; Cleve H
    Hoppe Seylers Z Physiol Chem; 1979 Mar; 360(3):421-8. PubMed ID: 571398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal membrane phospholipid asymmetry in sickle erythrocytes and its pathophysiologic significance.
    Lubin B; Chiu D; Roelofsen B; Van Deenen LL
    Prog Clin Biol Res; 1981; 56():171-93. PubMed ID: 7330009
    [No Abstract]   [Full Text] [Related]  

  • 12. Recovery of membrane micro-vesicles from human erythrocytes stored for transfusion: a mechanism for the erythrocyte discocyte-to-spherocyte shape transformation.
    Rumsby MG; Trotter J; Allan D; Michell RH
    Biochem Soc Trans; 1977; 5(1):126-8. PubMed ID: 892138
    [No Abstract]   [Full Text] [Related]  

  • 13. Protein penetration as a tool for the investigation of Langmuir films derived from erythrocytes.
    Tredgold RH; O'Mullane JE
    FEBS Lett; 1980 Aug; 117(1):273-6. PubMed ID: 7409174
    [No Abstract]   [Full Text] [Related]  

  • 14. Hydrocarbon phase transitions and lipid-protein interactions in the erythrocyte membrane. A 31P NMR and fluorescence study.
    Cullis PR; Grathwohl C
    Biochim Biophys Acta; 1977 Dec; 471(2):213-26. PubMed ID: 921979
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of Raman spectra of extraction of peripheral proteins from human erythrocyte membranes.
    Goheen SC; Gilman TH; Kauffman JW; Garvin JE
    Biochem Biophys Res Commun; 1977 Dec; 79(3):805-14. PubMed ID: 597307
    [No Abstract]   [Full Text] [Related]  

  • 16. Dynamics of the holes in human erythrocyte membrane ghosts.
    Lieber MR; Steck TL
    J Biol Chem; 1982 Oct; 257(19):11660-6. PubMed ID: 6811585
    [No Abstract]   [Full Text] [Related]  

  • 17. MgATP2- and the molecular organization of erythrocyte membranes [proceedings].
    Shukla SD; Billah MM; Finean JB; Michell RH
    Biochem Soc Trans; 1978; 6(1):285-6. PubMed ID: 640192
    [No Abstract]   [Full Text] [Related]  

  • 18. Dissociation and reconstitution of human erythrocyte membrane proteins using 3,4,5,6-tetrahydrophthalic anhydride.
    Howlett GJ; Wardrop AJ
    Arch Biochem Biophys; 1978 Jun; 188(2):429-37. PubMed ID: 677908
    [No Abstract]   [Full Text] [Related]  

  • 19. Aging of the erythrocyte. IV. Spin-label studies of membrane lipids, proteins and permeability.
    Bartosz G
    Biochim Biophys Acta; 1981 Jun; 644(1):69-73. PubMed ID: 6266465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of phospholipase c to detect structural changes in the membranes of human erythrocytes aged by storage.
    Shukla SD; Coleman R; Finean JB; Michell RH
    Biochim Biophys Acta; 1978 Sep; 512(2):341-9. PubMed ID: 213113
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.