These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 6402002)

  • 1. Effects of valinomycin, A23187 and repetitive sickling on irreversible sickle cell formation.
    Westerman MP; Allan D
    Br J Haematol; 1983 Mar; 53(3):399-409. PubMed ID: 6402002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of the shape of sickled cells by calcium and A23187.
    Clark MR; Greenquist AC; Shohet SB
    Blood; 1976 Dec; 48(6):899-909. PubMed ID: 826293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of red cell water content on the morphology of sickling.
    Clark MR; Guatelli JC; Mohandas N; Shohet SB
    Blood; 1980 May; 55(5):823-30. PubMed ID: 6767510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of irreversibly sickled cells in reducing the osmotic fragility of red cells in sickle cell anemia.
    Figueiredo MS; Zago MA
    Acta Physiol Pharmacol Latinoam; 1985; 35(1):49-56. PubMed ID: 2932889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent effects of microsieve aspiration and the ionophore A23187 on the morphologic characteristics of the surface of normal erythrocytes.
    Wells PH; Dreher KL; Burris SM; Krumweide M; White JG
    Am J Clin Pathol; 1980 Jun; 73(6):754-60. PubMed ID: 6772016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium and ionophore A23187 induce the sickle cell membrane phosphorylation pattern in normal erythrocytes.
    Johnson RM; Dzandu JK
    Biochim Biophys Acta; 1982 Nov; 692(2):218-22. PubMed ID: 6816279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of the mechanical properties of sickle cells by repetitive deoxygenation: role of calcium and the effects of calcium blockers.
    Nash GB; Boghossian S; Parmar J; Dormandy JA; Bevan D
    Br J Haematol; 1989 Jun; 72(2):260-4. PubMed ID: 2757968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of spicules obtained from sickle red cells on clotting activity.
    Westerman MP; Cole ER; Wu K
    Br J Haematol; 1984 Apr; 56(4):557-62. PubMed ID: 6424699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the in vitro formation of irreversibly sickled cells by cepharanthine.
    Ohnishi ST
    Br J Haematol; 1983 Dec; 55(4):665-71. PubMed ID: 6671086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvesicles from sickle erythrocytes and their relation to irreversible sickling.
    Allan D; Limbrick AR; Thomas P; Westerman MP
    Br J Haematol; 1981 Mar; 47(3):383-90. PubMed ID: 6779851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sickling of sickle erythrocytes does not alter phospholipid asymmetry.
    Raval PJ; Allan D
    Biochem J; 1984 Oct; 223(2):555-7. PubMed ID: 6497863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Ca2+-dependent biochemical changes in the ageing process in normal red cells and in the development of irreversibly sickled cells.
    Allan D; Raval PJ
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1987; 114(4):499-503. PubMed ID: 2446988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrendipine, nifedipine and verapamil inhibit the in vitro formation of irreversibly sickled cells.
    Ohnishi ST; Horiuchi KY; Horiuchi K; Jurman ME; Sadanaga KK
    Pharmacology; 1986; 32(5):248-56. PubMed ID: 2940606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane components in the red cells of patients with sickle cell anemia. Relationship to cell aging and to irreversibility of sickling.
    Westerman MP; Diloy-Puray M; Streczyn M
    Biochim Biophys Acta; 1979 Oct; 557(1):149-55. PubMed ID: 549632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partially oxygenated sickled cells: sickle-shaped red cells found in circulating blood of patients with sickle cell disease.
    Asakura T; Mattiello JA; Obata K; Asakura K; Reilly MP; Tomassini N; Schwartz E; Ohene-Frempong K
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12589-93. PubMed ID: 7809083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of a newly recognized population of high-Na+, low-K+, low-density sickle and normal red cells.
    Bookchin RM; Etzion Z; Sorette M; Mohandas N; Skepper JN; Lew VL
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):8045-50. PubMed ID: 10859357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells.
    Franck PF; Bevers EM; Lubin BH; Comfurius P; Chiu DT; Op den Kamp JA; Zwaal RF; van Deenen LL; Roelofsen B
    J Clin Invest; 1985 Jan; 75(1):183-90. PubMed ID: 3965502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-induced damage of haemoglobin SS and normal erythrocytes.
    Eaton JW; Berger E; White JG; Jacob HS
    Br J Haematol; 1978 Jan; 38(1):57-62. PubMed ID: 346046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte calcium abnormalities and the clinical severity of sickling disorders.
    Steinberg MH; Eaton JW; Berger E; Coleman MB; Oelshlegel FJ
    Br J Haematol; 1978 Dec; 40(4):533-39. PubMed ID: 728370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of in vitro formation of irreversibly sickled cells and modes of action of its inhibitors.
    Ohnishi ST; Horiuchi KY; Horiuchi K
    Biochim Biophys Acta; 1986 Apr; 886(1):119-29. PubMed ID: 3955078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.