BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 6402034)

  • 1. Metabolism of purine nucleosides in human and ovine lymphocytes and rat thymocytes and their influence on mitogenic stimulation.
    Peters GJ; Oosterhof A; Veerkamp JH
    Biochim Biophys Acta; 1983 Jan; 755(1):127-36. PubMed ID: 6402034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2006 Dec; 225(1):115-26. PubMed ID: 16845529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of deoxyguanosine lymphotoxicity. Human thymocytes, but not peripheral blood lymphocytes accumulate deoxy-GTP in conditions simulating purine nucleoside phosphorylase deficiency.
    Fairbanks LD; Taddeo A; Duley JA; Simmonds HA
    J Immunol; 1990 Jan; 144(2):485-91. PubMed ID: 2104895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of guanosine and deoxyguanosine in mammalian lymphocytes and their influence on mitogenic stimulation.
    Peters GJ; Oosterhof A; Veerkamp JH
    Adv Exp Med Biol; 1984; 165 Pt B():119-24. PubMed ID: 6720423
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolism of purine nucleosides and phosphoribosylpyrophosphate in thymocytes and splenocytes of various mammalian species.
    Peters GJ; Oosterhof A; Veerkamp JH
    Comp Biochem Physiol B; 1982; 73(3):535-41. PubMed ID: 6185267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biochemistry and pharmacology of PD 116124 (8-amino-2'-nordeoxyguanosine), an inhibitor of purine nucleoside phosphorylase (PNP).
    Dong MK; Scott ME; Schrier DJ; Suto MJ; Sircar JC; Black A; Chang T; Gilbertsen RB
    J Pharmacol Exp Ther; 1992 Jan; 260(1):319-26. PubMed ID: 1530976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of inhibition and "reversal" of mitogen-induced lymphocyte activation in a model of purine-nucleoside phosphorylase deficiency.
    Albert D; Bluestein HG; Willis RC; Nette K; Seegmiller JE
    Cell Immunol; 1984 Jul; 86(2):501-9. PubMed ID: 6428752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of the salvage of purine compounds on the proliferation of rat T-lymphocytes with normal or inhibited purine de novo synthesis.
    Thuillier L; Perignon JL; Houllier AM; Munier A; Cartier P
    Biochim Biophys Acta; 1984 Apr; 798(3):343-9. PubMed ID: 6424727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purine nucleoside transport and metabolism in isolated rat jejunum.
    Stow RA; Bronk JR
    J Physiol; 1993 Aug; 468():311-24. PubMed ID: 8254512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of purine metabolism and nucleotide pools in normal and hypoxanthine-guanine phosphoribosyltransferase-deficient neuroblastoma cells.
    Snyder FF; Cruikshank MK; Seegmiller JE
    Biochim Biophys Acta; 1978 Nov; 543(4):556-69. PubMed ID: 718989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of macrophage-mediated suppression by purine nucleoside phosphorylase substrates.
    Cohen A; Kimchi Z
    J Immunol; 1982 May; 128(5):2253-7. PubMed ID: 6801134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine metabolism in phytohemagglutinin-stimulated human lymphocytes.
    Snyder FF; Mendelsohn J; Seegmiller JE
    J Clin Invest; 1976 Sep; 58(3):654-66. PubMed ID: 956393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of deoxynucleosides by lymphocytes in long-term culture deficient in different purine enzymes.
    Simmonds HA; Goday A; Morris GS; Brolsma MF
    Biochem Pharmacol; 1984 Mar; 33(5):763-70. PubMed ID: 6424679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of deoxyguanosine on human lymphocyte function. I. Analysis of the interference with lymphocyte proliferation in vitro.
    Spaapen LJ; Rijkers GT; Staal GE; Rijksen G; Wadman SK; Stoop JW; Zegers BJ
    J Immunol; 1984 May; 132(5):2311-7. PubMed ID: 6425399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for active purine nucleoside cycles in human mononuclear cells and cultured fibroblasts.
    Barankiewicz J; Gelfand EW; Issekutz A; Cohen A
    J Biol Chem; 1982 Oct; 257(19):11597-600. PubMed ID: 6811584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposed explanation for S-adenosylhomocysteine hydrolase deficiency in purine nucleoside phosphorylase and hypoxanthine-guanine phosphoribosyltransferase-deficient patients.
    Hershfield MS
    J Clin Invest; 1981 Mar; 67(3):696-701. PubMed ID: 6782120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purine salvage pathways in myocardium.
    Manfredi JP; Holmes EW
    Annu Rev Physiol; 1985; 47():691-705. PubMed ID: 2986542
    [No Abstract]   [Full Text] [Related]  

  • 18. Purine metabolism in microplasmodia of Physarum polycephalum.
    Fink K; Nygaard P
    Biochim Biophys Acta; 1979 Jul; 563(2):269-77. PubMed ID: 223640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal purine metabolism and purine overproduction in a patient deficient in purine nucleoside phosphorylase.
    Cohen A; Doyle D; Martin DW; Ammann AJ
    N Engl J Med; 1976 Dec; 295(26):1449-54. PubMed ID: 825775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The purine nucleoside cycle in cell-free extracts of rat brain: evidence for the occurrence of an inosine and a guanosine cycle with distinct metabolic roles.
    Barsotti C; Pesi R; Felice F; Ipata PL
    Cell Mol Life Sci; 2003 Apr; 60(4):786-93. PubMed ID: 12785725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.