These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 6402034)

  • 1. Metabolism of purine nucleosides in human and ovine lymphocytes and rat thymocytes and their influence on mitogenic stimulation.
    Peters GJ; Oosterhof A; Veerkamp JH
    Biochim Biophys Acta; 1983 Jan; 755(1):127-36. PubMed ID: 6402034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2006 Dec; 225(1):115-26. PubMed ID: 16845529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of deoxyguanosine lymphotoxicity. Human thymocytes, but not peripheral blood lymphocytes accumulate deoxy-GTP in conditions simulating purine nucleoside phosphorylase deficiency.
    Fairbanks LD; Taddeo A; Duley JA; Simmonds HA
    J Immunol; 1990 Jan; 144(2):485-91. PubMed ID: 2104895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of guanosine and deoxyguanosine in mammalian lymphocytes and their influence on mitogenic stimulation.
    Peters GJ; Oosterhof A; Veerkamp JH
    Adv Exp Med Biol; 1984; 165 Pt B():119-24. PubMed ID: 6720423
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolism of purine nucleosides and phosphoribosylpyrophosphate in thymocytes and splenocytes of various mammalian species.
    Peters GJ; Oosterhof A; Veerkamp JH
    Comp Biochem Physiol B; 1982; 73(3):535-41. PubMed ID: 6185267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biochemistry and pharmacology of PD 116124 (8-amino-2'-nordeoxyguanosine), an inhibitor of purine nucleoside phosphorylase (PNP).
    Dong MK; Scott ME; Schrier DJ; Suto MJ; Sircar JC; Black A; Chang T; Gilbertsen RB
    J Pharmacol Exp Ther; 1992 Jan; 260(1):319-26. PubMed ID: 1530976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of inhibition and "reversal" of mitogen-induced lymphocyte activation in a model of purine-nucleoside phosphorylase deficiency.
    Albert D; Bluestein HG; Willis RC; Nette K; Seegmiller JE
    Cell Immunol; 1984 Jul; 86(2):501-9. PubMed ID: 6428752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of the salvage of purine compounds on the proliferation of rat T-lymphocytes with normal or inhibited purine de novo synthesis.
    Thuillier L; Perignon JL; Houllier AM; Munier A; Cartier P
    Biochim Biophys Acta; 1984 Apr; 798(3):343-9. PubMed ID: 6424727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purine nucleoside transport and metabolism in isolated rat jejunum.
    Stow RA; Bronk JR
    J Physiol; 1993 Aug; 468():311-24. PubMed ID: 8254512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of purine metabolism and nucleotide pools in normal and hypoxanthine-guanine phosphoribosyltransferase-deficient neuroblastoma cells.
    Snyder FF; Cruikshank MK; Seegmiller JE
    Biochim Biophys Acta; 1978 Nov; 543(4):556-69. PubMed ID: 718989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of macrophage-mediated suppression by purine nucleoside phosphorylase substrates.
    Cohen A; Kimchi Z
    J Immunol; 1982 May; 128(5):2253-7. PubMed ID: 6801134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine metabolism in phytohemagglutinin-stimulated human lymphocytes.
    Snyder FF; Mendelsohn J; Seegmiller JE
    J Clin Invest; 1976 Sep; 58(3):654-66. PubMed ID: 956393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of deoxynucleosides by lymphocytes in long-term culture deficient in different purine enzymes.
    Simmonds HA; Goday A; Morris GS; Brolsma MF
    Biochem Pharmacol; 1984 Mar; 33(5):763-70. PubMed ID: 6424679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of deoxyguanosine on human lymphocyte function. I. Analysis of the interference with lymphocyte proliferation in vitro.
    Spaapen LJ; Rijkers GT; Staal GE; Rijksen G; Wadman SK; Stoop JW; Zegers BJ
    J Immunol; 1984 May; 132(5):2311-7. PubMed ID: 6425399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for active purine nucleoside cycles in human mononuclear cells and cultured fibroblasts.
    Barankiewicz J; Gelfand EW; Issekutz A; Cohen A
    J Biol Chem; 1982 Oct; 257(19):11597-600. PubMed ID: 6811584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposed explanation for S-adenosylhomocysteine hydrolase deficiency in purine nucleoside phosphorylase and hypoxanthine-guanine phosphoribosyltransferase-deficient patients.
    Hershfield MS
    J Clin Invest; 1981 Mar; 67(3):696-701. PubMed ID: 6782120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purine salvage pathways in myocardium.
    Manfredi JP; Holmes EW
    Annu Rev Physiol; 1985; 47():691-705. PubMed ID: 2986542
    [No Abstract]   [Full Text] [Related]  

  • 18. The purine nucleoside cycle in cell-free extracts of rat brain: evidence for the occurrence of an inosine and a guanosine cycle with distinct metabolic roles.
    Barsotti C; Pesi R; Felice F; Ipata PL
    Cell Mol Life Sci; 2003 Apr; 60(4):786-93. PubMed ID: 12785725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purine metabolism in microplasmodia of Physarum polycephalum.
    Fink K; Nygaard P
    Biochim Biophys Acta; 1979 Jul; 563(2):269-77. PubMed ID: 223640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal purine metabolism and purine overproduction in a patient deficient in purine nucleoside phosphorylase.
    Cohen A; Doyle D; Martin DW; Ammann AJ
    N Engl J Med; 1976 Dec; 295(26):1449-54. PubMed ID: 825775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.