These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 640227)

  • 21. Symposium on Myocardial Blood Flow in Man--Methods and Significance in Myocardial Disease: Pisa, Italy; June 10-12, 1971. Report of the session on acute hypoxia.
    Mommaerts WF; Heggtveit HA; Scheuer J
    Cardiology; 1972; 57(1):73-88. PubMed ID: 5037895
    [No Abstract]   [Full Text] [Related]  

  • 22. Metabolism and the electrical activity of anoxic ventricular muscle.
    McDonald TF; MacLeod DP
    J Physiol; 1973 Mar; 229(3):559-82. PubMed ID: 4693674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts.
    Neely JR; Grotyohann LW
    Circ Res; 1984 Dec; 55(6):816-24. PubMed ID: 6499136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of the response to adenosine during organ culture of young embryonic chick hearts.
    Hatae J; Sperelakis N; Wahler GM
    J Dev Physiol; 1989 Jun; 11(6):342-5. PubMed ID: 2592752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. KATP channel activation in a rabbit model of chronic myocardial hypoxia.
    Baker JE; Contney SJ; Gross GJ; Bosnjak ZJ
    J Mol Cell Cardiol; 1997 Feb; 29(2):845-8. PubMed ID: 9140841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific inhibition of HCN channels slows rhythm differently in atria, ventricle and outflow tract and stabilizes conduction in the anoxic-reoxygenated embryonic heart model.
    Sarre A; Pedretti S; Gardier S; Raddatz E
    Pharmacol Res; 2010 Jan; 61(1):85-91. PubMed ID: 19818405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia.
    Silverman HS; Wei S; Haigney MC; Ocampo CJ; Stern MD
    Circ Res; 1997 May; 80(5):699-707. PubMed ID: 9130451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of physiological responses to acetylcholine during organ culture of young embryonic chick hearts.
    Dong L; Sperelakis N; Wahler GM
    J Dev Physiol; 1986 Oct; 8(5):307-14. PubMed ID: 3794223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of beraprost on the transmembrane potentials of guinea-pig ventricular muscles during normoxia and hypoxia-reoxygenation.
    Ueno Y; Shigenobu K; Nishio S
    Br J Pharmacol; 1993 Aug; 109(4):1014-9. PubMed ID: 8401913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification by hypoxia, hyperkalaemia and acidosis of the cardiac electrophysiological effects of a range of antiarrhythmic drugs.
    Pacini DJ; Boachie-Ansah G; Kane KA
    Br J Pharmacol; 1992 Nov; 107(3):665-70. PubMed ID: 1472965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactivity of chick embryo heart to cholinergic agonists during ontogenesis: decline in desensitization at the onset of cholinergic transmission.
    Pappano AJ; Skowronek CA
    J Pharmacol Exp Ther; 1974 Oct; 191(1):109-18. PubMed ID: 4371671
    [No Abstract]   [Full Text] [Related]  

  • 32. Metabolic and heart rate responses to hypoxia in early chicken embryos in the transition from diffusive to convective gas transport.
    Mortola JP; Marinescu DC; Pierre A; Artman L
    Respir Physiol Neurobiol; 2012 Apr; 181(2):109-17. PubMed ID: 22366866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociation of hypoxia-induced calcium gain and rise in resting tension in isolated rat hearts.
    Nayler WG; Elz JS; Buckley DJ
    Am J Physiol; 1988 Apr; 254(4 Pt 2):H678-85. PubMed ID: 3354696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Positive inotropic effects of acetylcholine and BAY K 8644 in embryonic chick ventricle.
    Tsuji Y; Tajima T; Yuen J; Pappano AJ
    Am J Physiol; 1987 Apr; 252(4 Pt 2):H807-15. PubMed ID: 2436490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The pathophysiology of anoxic injury in central nervous system white matter.
    Ransom BR; Stys PK; Waxman SG
    Stroke; 1990 Nov; 21(11 Suppl):III52-7. PubMed ID: 2237986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of age, species and adrenaline on the recovery of isolated atria from anoxia.
    Penn RG
    Br J Pharmacol; 1970 Jun; 39(2):309-16. PubMed ID: 5425275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embryonic versus adult myocardium: adenine nucleotide degradation during ischemia.
    Mask WK; Abd-Elfattah AS; Jessen M; Brunsting LA; Lekven J; Wechsler AS
    Ann Thorac Surg; 1989 Jul; 48(1):109-12. PubMed ID: 2764588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of calcium ionophores to determine the effects of intracellular calcium on the action potential of canine cardiac Purkinje fibers.
    Gelles JM
    Circ Res; 1977 Jul; 41(1):94-9. PubMed ID: 324657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of calcium on electrical propagation in early embryonic precontractile heart as revealed by multiple-site optical recording of action potentials.
    Komuro H; Hirota A; Yada T; Sakai T; Fujii S; Kamino K
    J Gen Physiol; 1985 Mar; 85(3):365-82. PubMed ID: 3921654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Action potential synchrony in embryonic precontractile chick heart: optical monitoring with potentiometric dyes.
    Fujii S; Hirota A; Kamino K
    J Physiol; 1981; 319():529-41. PubMed ID: 7320925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.