These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6402486)

  • 1. Chromosomal localization of gut, fruC, and pfk mutations affecting genes involved in Bacillus subtilis D-glucitol catabolism.
    Gay P; Chalumeau H; Steinmetz M
    J Bacteriol; 1983 Mar; 153(3):1133-7. PubMed ID: 6402486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and genetic study of D-glucitol transport and catabolism in Bacillus subtilis.
    Chalumeau H; Delobbe A; Gay P
    J Bacteriol; 1978 Jun; 134(3):920-8. PubMed ID: 149113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucitol induction in Bacillus subtilis is mediated by a regulatory factor, GutR.
    Ye R; Rehemtulla SN; Wong SL
    J Bacteriol; 1994 Jun; 176(11):3321-7. PubMed ID: 8195087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mannitol-1-phosphate dehydrogenase (MtlD) is required for mannitol and glucitol assimilation in Bacillus subtilis: possible cooperation of mtl and gut operons.
    Watanabe S; Hamano M; Kakeshita H; Bunai K; Tojo S; Yamaguchi H; Fujita Y; Wong SL; Yamane K
    J Bacteriol; 2003 Aug; 185(16):4816-24. PubMed ID: 12897001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of glucitol in the GutR-mediated transcription activation process in Bacillus subtilis: tight binding of GutR to tis binding site.
    Poon KK; Chen CL; Wong SL
    J Biol Chem; 2001 Mar; 276(13):9620-5. PubMed ID: 11118449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence analysis of the groESL-cotA region of the Bacillus subtilis genome, containing the restriction/modification system genes.
    Kasahara Y; Nakai S; Ogasawara N; Yata K; Sadaie Y
    DNA Res; 1997 Oct; 4(5):335-9. PubMed ID: 9455482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.
    Lengeler J
    J Bacteriol; 1975 Oct; 124(1):26-38. PubMed ID: 1100602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosomal locations of three Bacillus subtilis din genes.
    Gillespie K; Yasbin RE
    J Bacteriol; 1987 Jul; 169(7):3372-4. PubMed ID: 3110138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of glucitol in the GutR-mediated transcription activation process in Bacillus subtilis: glucitol induces GutR to change its conformation and to bind ATP.
    Poon KK; Chu JC; Wong SL
    J Biol Chem; 2001 Aug; 276(32):29819-25. PubMed ID: 11390381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Genetic mapping of an additional regulatory locus of the riboflavin operon of Bacillus subtilis].
    Kreneva RA; Perumov DA
    Genetika; 1996 Dec; 32(12):1623-8. PubMed ID: 9102355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic evidence for glucitol-specific enzyme III, an essential phosphocarrier protein of the Salmonella typhimurium glucitol phosphotransferase system.
    Sarno MV; Tenn LG; Desai A; Chin AM; Grenier FC; Saier MH
    J Bacteriol; 1984 Mar; 157(3):953-5. PubMed ID: 6365895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mapping of mutations in the genes of nucleoside catabolism on the Bacillus subtilis chromosome].
    Sukhodolets VV; Fliakh IaV; Rumiantseva EV
    Genetika; 1983; 19(2):221-6. PubMed ID: 6403407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and genetic characterization of the glucitol operon in Escherichia coli.
    Yamada M; Saier MH
    J Bacteriol; 1987 Jul; 169(7):2990-4. PubMed ID: 3036766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon.
    Kreneva RA; Perumov DA
    Mol Gen Genet; 1990 Jul; 222(2-3):467-9. PubMed ID: 2125694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mapping by means of protoplast fusion in Bacillus subtilis.
    Akamatsu T; Sekiguchi J
    Mol Gen Genet; 1987 Jun; 208(1-2):254-62. PubMed ID: 3112521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Bacillus subtilis transformation-deficient mutants and mapping of competence genes.
    Mastromei G; Barberio C; Pistolesi S; Polsinelli M
    Genet Res; 1989 Aug; 54(1):1-5. PubMed ID: 2509290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacement of the Bacillus subtilis subtilisin structural gene with an In vitro-derived deletion mutation.
    Stahl ML; Ferrari E
    J Bacteriol; 1984 May; 158(2):411-8. PubMed ID: 6427178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of stress mutants of Bacillus subtilis by a novel genetic method.
    Geisler U; Schumann W
    FEMS Microbiol Lett; 1993 Apr; 108(3):251-4. PubMed ID: 8514112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic mapping of katA, a locus that affects catalase 1 level in Bacillus subtilis.
    Loewen PC; Switala J
    J Bacteriol; 1987 Dec; 169(12):5848-51. PubMed ID: 2824450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of the flaA locus of Bacillus subtilis.
    Hauser PM; Crabb WD; Fiora MG; Scoffone F; Galizzi A
    J Bacteriol; 1991 Jun; 173(11):3580-3. PubMed ID: 1828466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.