These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6402487)

  • 21. Abolition of crypticity of Arthrobacter pyridinolis toward glucose and alpha-glucosides by tricarboxylic acid cycle intermediates.
    Sobel ME; Wolfson EB; Krulwich TA
    J Bacteriol; 1973 Oct; 116(1):271-8. PubMed ID: 4745416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A succinate transport mutant of Bradyrhizobium japonicum forms ineffective nodules on soybeans.
    el-Din AK
    Can J Microbiol; 1992 Mar; 38(3):230-4. PubMed ID: 1393826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carrier-mediated transport is involved in mucosal succinate uptake by rat large intestine.
    Wolffram S; Badertscher M; Scharrer E
    Exp Physiol; 1994 Mar; 79(2):215-26. PubMed ID: 8003305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of active versus passive uptake of metabolites by Rhizobium japonicum bacteroids.
    Reibach PH; Streeter JG
    J Bacteriol; 1984 Jul; 159(1):47-52. PubMed ID: 6203891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molybdate transport by Bradyrhizobium japonicum bacteroids.
    Maier RJ; Graham L
    J Bacteriol; 1988 Dec; 170(12):5613-9. PubMed ID: 3192511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-affinity l-malate transporter DcuE of Actinobacillus succinogenes catalyses reversible exchange of C4-dicarboxylates.
    Rhie MN; Cho YB; Lee YJ; Kim OB
    Environ Microbiol Rep; 2019 Apr; 11(2):129-139. PubMed ID: 30452121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of divalent cations on succinate transport in Rhizobium tropici, R. leguminosarum bv phaseoli and R. loti.
    Batista S; Castro S; Ubalde M; Martínez-Drets G
    World J Microbiol Biotechnol; 1994 May; 10(3):249-55. PubMed ID: 24421004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochromelinked fermentation in Bacteroides ruminicola.
    WHITE DC; BRYANT MP; CALDWELL DR
    J Bacteriol; 1962 Oct; 84(4):822-8. PubMed ID: 14000291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells.
    Lo TC; Rayman MK; Sanwal BD
    J Biol Chem; 1972 Oct; 247(19):6323-31. PubMed ID: 4346810
    [No Abstract]   [Full Text] [Related]  

  • 30. Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.
    Witschel M; Egli T; Zehnder AJB; Wherli E; Spycher M
    Microbiology (Reading); 1999 Apr; 145 ( Pt 4)():973-983. PubMed ID: 10220177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Root exudates in relation to growth and nitrogenase activity of Rhizobium japonicum.
    Odunfa SA; Werner D
    Z Allg Mikrobiol; 1981; 21(8):601-6. PubMed ID: 6949404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C4-dicarboxylate transport in Bacillus subtilis studied with 3-fluoro-L-erythro-malate as a substrate.
    Willecke K; Lange R
    J Bacteriol; 1974 Feb; 117(2):373-8. PubMed ID: 4204434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons.
    Reid CJ; Walshaw DL; Poole PS
    Microbiology (Reading); 1996 Sep; 142 ( Pt 9)():2603-12. PubMed ID: 8828229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation of citrate oxidation and transport in human placental mitochondria by L-malate.
    Swierczyński J; Scislowski P; Aleksandrowicz Z; Zelewski L
    Acta Biochim Pol; 1976; 23(2-3):93-102. PubMed ID: 970039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between succinate transport and production of extracellular poly(3-hydroxybutyrate) depolymerase in Pseudomonas lemoignei.
    Terpe K; Kerkhoff K; Pluta E; Jendrossek D
    Appl Environ Microbiol; 1999 Apr; 65(4):1703-9. PubMed ID: 10103271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis.
    Bisschop A; Doddema H; Konings WN
    J Bacteriol; 1975 Nov; 124(2):613-22. PubMed ID: 171251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The substitution of calcium for magnesium in H+,K+-ATPase catalytic cycle. Evidence for two actions of divalent cations.
    Mendlein J; Sachs G
    J Biol Chem; 1989 Nov; 264(31):18512-9. PubMed ID: 2553712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium-dependent succinate transport by isolated chick intestinal cells.
    Kimmich GA; Randles J; Bennett E
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1151-7. PubMed ID: 2058650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1983 Sep; 245(3):F374-81. PubMed ID: 6225342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Succinate and malate improve development of hamster eight-cell embryos in vitro: confirmation of viability by embryo transfer.
    Ain R; Seshagiri PB
    Mol Reprod Dev; 1997 Aug; 47(4):440-7. PubMed ID: 9211429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.